A note on estimating the dimension from a random geometric graph

被引:0
|
作者
Atamanchuk, Caelan [1 ]
Devroye, Luc [1 ]
Lugosi, Gabor [2 ,3 ,4 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
[2] Pompeu Fabra Univ, Dept Econ & Business, Barcelona, Spain
[3] ICREA, Pg Lluis Companys 23, Barcelona 08010, Spain
[4] Barcelona Grad Sch Econ, Barcelona, Spain
来源
ELECTRONIC JOURNAL OF STATISTICS | 2024年 / 18卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
Multivariate densities; nonparametric estima tion; random geometric graphs; estimating the dimension; absolute conti nuity; INTRINSIC DIMENSIONALITY; POINTS;
D O I
10.1214/24-EJS2331
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let G(n) be a random geometric graph with vertex set [n] based on n i.i.d. random vectors X-1,& mldr;,X-n drawn from an unknown density f on R-d. An edge (i,j) is present when parallel to X-i-X-j parallel to <= r(n), for a given threshold r(n) possibly depending upon n, where parallel to & sdot;parallel to denotes Euclidean distance. We study the problem of estimating the dimension d of the underlying space when we have access to the adjacency matrix of the graph but do not know r(n) or the vectors X-i. The main result of the paper is that there exists an estimator of d that converges to d in probability as n ->infinity for all densities with integral f(5)infinity and r(n)=o(1). The conditions allow very sparse graphs since when n(3/2)r(n)(d)-> 0, the graph contains isolated edges only, with high probability. We also show that, without any condition on the density, a consistent estimator of d exists when nr(n)(d)->infinity and r(n)=o(1).
引用
收藏
页码:5659 / 5678
页数:20
相关论文
共 50 条
  • [41] Probabilistic Properties of Highly Connected Random Geometric Graphs
    Manthey, Bodo
    Reijnders, Victor M. J. J.
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2018, 2018, 10743 : 59 - 72
  • [42] Spectral Analysis of the Adjacency Matrix of Random Geometric Graphs
    Hamidouche, Mounia
    Cottatellucci, Laura
    Avrachenkov, Konstantin
    2019 57TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2019, : 208 - 214
  • [43] Maker-Breaker Games on Random Geometric Graphs
    Beveridge, Andrew
    Dudek, Andrzej
    Frieze, Alan
    Muller, Tobias
    Stojakovic, Milos
    RANDOM STRUCTURES & ALGORITHMS, 2014, 45 (04) : 553 - 607
  • [44] Constrained Minimum Passage Time in Random Geometric Graphs
    Ganesan, Ghurumuruhan
    ALGORITHMICA, 2021, 83 (02) : 576 - 588
  • [45] Cliques in High-Dimensional Random Geometric Graphs
    Avrachenkov, Konstantin
    Bobu, Andrei
    COMPLEX NETWORKS AND THEIR APPLICATIONS VIII, VOL 1, 2020, 881 : 591 - 600
  • [46] Constrained Minimum Passage Time in Random Geometric Graphs
    Ghurumuruhan Ganesan
    Algorithmica, 2021, 83 : 576 - 588
  • [47] Finite Random Geometric Graphs by Circular and Square Coverage
    Chau, Chi-Kin
    2009 7TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS, 2009, : 520 - 527
  • [48] Connectivity of Soft Random Geometric Graphs over Annuli
    Giles, Alexander P.
    Georgiou, Orestis
    Dettmann, Carl P.
    JOURNAL OF STATISTICAL PHYSICS, 2016, 162 (04) : 1068 - 1083
  • [49] Cliques in high-dimensional random geometric graphs
    Konstantin E. Avrachenkov
    Andrei V. Bobu
    Applied Network Science, 5
  • [50] Scaling laws for maximum coloring of random geometric graphs
    Borst, Sem
    Bradonjic, Milan
    DISCRETE APPLIED MATHEMATICS, 2017, 217 : 427 - 437