A note on estimating the dimension from a random geometric graph

被引:0
|
作者
Atamanchuk, Caelan [1 ]
Devroye, Luc [1 ]
Lugosi, Gabor [2 ,3 ,4 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
[2] Pompeu Fabra Univ, Dept Econ & Business, Barcelona, Spain
[3] ICREA, Pg Lluis Companys 23, Barcelona 08010, Spain
[4] Barcelona Grad Sch Econ, Barcelona, Spain
来源
ELECTRONIC JOURNAL OF STATISTICS | 2024年 / 18卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
Multivariate densities; nonparametric estima tion; random geometric graphs; estimating the dimension; absolute conti nuity; INTRINSIC DIMENSIONALITY; POINTS;
D O I
10.1214/24-EJS2331
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let G(n) be a random geometric graph with vertex set [n] based on n i.i.d. random vectors X-1,& mldr;,X-n drawn from an unknown density f on R-d. An edge (i,j) is present when parallel to X-i-X-j parallel to <= r(n), for a given threshold r(n) possibly depending upon n, where parallel to & sdot;parallel to denotes Euclidean distance. We study the problem of estimating the dimension d of the underlying space when we have access to the adjacency matrix of the graph but do not know r(n) or the vectors X-i. The main result of the paper is that there exists an estimator of d that converges to d in probability as n ->infinity for all densities with integral f(5)infinity and r(n)=o(1). The conditions allow very sparse graphs since when n(3/2)r(n)(d)-> 0, the graph contains isolated edges only, with high probability. We also show that, without any condition on the density, a consistent estimator of d exists when nr(n)(d)->infinity and r(n)=o(1).
引用
收藏
页码:5659 / 5678
页数:20
相关论文
共 50 条
  • [31] On the treewidth and related parameters of random geometric graphs
    Mitsche, Dieter
    Perarnau, Guillem
    29TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, (STACS 2012), 2012, 14 : 408 - 419
  • [32] ON TREEWIDTH AND RELATED PARAMETERS OF RANDOM GEOMETRIC GRAPHS
    Mitsche, Dieter
    Perarnau, Guillem
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (02) : 1328 - 1354
  • [33] Balanced cut approximation in random geometric graphs
    Diaz, Josep
    Grandoni, Fabrizio
    Spaccamela, Alberto Marchetti
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2006, 4288 : 527 - +
  • [34] Sharp threshold for hamiltonicity of random geometric graphs
    Diaz, Josep
    Mitsche, Dieter
    Perez, Xavier
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (01) : 57 - 65
  • [35] MAXIMALLY PERSISTENT CYCLES IN RANDOM GEOMETRIC COMPLEXES
    Bobrowski, Omer
    Kahle, Matthew
    Skraba, Primoz
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (04) : 2032 - 2060
  • [36] Local and Global Expansion in Random Geometric Graphs
    Liu, Siqi
    Mohanty, Sidhanth
    Schramm, Tselil
    Yang, Elizabeth
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 817 - 825
  • [37] Balanced cut approximation in random geometric graphs
    Diaz, Josep
    Grandoni, Fabrizio
    Spaccamela, Alberto Marchetti
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (27-29) : 2725 - 2731
  • [38] Rainbow Hamilton cycles in random geometric graphs
    Frieze, Alan
    Perez-Gimenez, Xavier
    RANDOM STRUCTURES & ALGORITHMS, 2024, 64 (04) : 878 - 898
  • [39] On the generalized circle problem for a random lattice in large dimension
    Strombergsson, Andreas
    Sodergren, Anders
    ADVANCES IN MATHEMATICS, 2019, 345 : 1042 - 1074
  • [40] Agreement in presence of noise: pseudogradients on random geometric networks
    Hatano, Yuko
    Das, Arindam K.
    Mesbahi, Mehran
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 6382 - 6387