A note on estimating the dimension from a random geometric graph

被引:0
|
作者
Atamanchuk, Caelan [1 ]
Devroye, Luc [1 ]
Lugosi, Gabor [2 ,3 ,4 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
[2] Pompeu Fabra Univ, Dept Econ & Business, Barcelona, Spain
[3] ICREA, Pg Lluis Companys 23, Barcelona 08010, Spain
[4] Barcelona Grad Sch Econ, Barcelona, Spain
来源
ELECTRONIC JOURNAL OF STATISTICS | 2024年 / 18卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
Multivariate densities; nonparametric estima tion; random geometric graphs; estimating the dimension; absolute conti nuity; INTRINSIC DIMENSIONALITY; POINTS;
D O I
10.1214/24-EJS2331
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let G(n) be a random geometric graph with vertex set [n] based on n i.i.d. random vectors X-1,& mldr;,X-n drawn from an unknown density f on R-d. An edge (i,j) is present when parallel to X-i-X-j parallel to <= r(n), for a given threshold r(n) possibly depending upon n, where parallel to & sdot;parallel to denotes Euclidean distance. We study the problem of estimating the dimension d of the underlying space when we have access to the adjacency matrix of the graph but do not know r(n) or the vectors X-i. The main result of the paper is that there exists an estimator of d that converges to d in probability as n ->infinity for all densities with integral f(5)infinity and r(n)=o(1). The conditions allow very sparse graphs since when n(3/2)r(n)(d)-> 0, the graph contains isolated edges only, with high probability. We also show that, without any condition on the density, a consistent estimator of d exists when nr(n)(d)->infinity and r(n)=o(1).
引用
收藏
页码:5659 / 5678
页数:20
相关论文
共 50 条
  • [21] HAMILTON CYCLES IN RANDOM GEOMETRIC GRAPHS
    Balogh, Jozsef
    Bollobas, Bela
    Krivelevich, Michael
    Muller, Tobias
    Walters, Mark
    ANNALS OF APPLIED PROBABILITY, 2011, 21 (03) : 1053 - 1072
  • [22] A note on random coin tossing
    Bose, Arup
    Gangopadhyay, Sreela
    Goswami, Alok
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2007, 18 (03): : 405 - 416
  • [23] Stretch and Diameter in Random Geometric Graphs
    Ghurumuruhan Ganesan
    Algorithmica, 2018, 80 : 300 - 330
  • [24] Bootstrap percolation in random geometric graphs
    Falgas-Ravry, Victor
    Sarkar, Amites
    ADVANCES IN APPLIED PROBABILITY, 2023, 55 (04) : 1254 - 1300
  • [25] Intersecting Diametral Balls Induced by a Geometric Graph
    Pirahmad, Olimjoni
    Polyanskii, Alexandr
    Vasilevskii, Alexey
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 71 (2) : 480 - 497
  • [26] Random walk with jumps in large-scale random geometric graphs
    Tzevelekas, Leonidas
    Oikonomou, Konstantinos
    Stavrakakis, Ioannis
    COMPUTER COMMUNICATIONS, 2010, 33 (13) : 1505 - 1514
  • [27] PAINTING A GRAPH WITH COMPETING RANDOM WALKS
    Miller, Jason
    ANNALS OF PROBABILITY, 2013, 41 (02) : 636 - 670
  • [28] Estimating the reduced moments of a random measure
    Kiêu, K
    Mora, M
    ADVANCES IN APPLIED PROBABILITY, 1999, 31 (01) : 48 - 62
  • [29] Dimension Estimation Using Random Connection Models
    Serra, Paulo
    Mandjes, Michel
    JOURNAL OF MACHINE LEARNING RESEARCH, 2017, 18
  • [30] A simpler proof for the dimension of the graph of the classical Weierstrass function
    Keller, Gerhard
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (01): : 169 - 181