On discrete orthogonal U-Bernoulli Korobov-type polynomials

被引:0
作者
Ramirez, William [1 ,2 ]
Alejandro, Urieles [3 ]
Cesarano, Clemente [2 ]
机构
[1] Univ Costa, Dept Nat & Exact Sci, Calle 58,55-66, Barranquilla 080002, Colombia
[2] UniNettuno Univ, Sect Math, Corso Vittorio Emanuele II,39, I-00186 Rome, Italy
[3] Univ Atlantico, Programa Matemat, Km 7 Via Pto Colombia, Barranquilla, Colombia
来源
CONSTRUCTIVE MATHEMATICAL ANALYSIS | 2024年 / 7卷
关键词
Bernoulli polynomials; U-Bernoulli Korobov; discrete orthogonal polynomials;
D O I
10.33205/cma.1502670
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The primary objective of this paper is to introduce and examine the new class of discrete orthogonal polynomials called U-Bernoulli Korobov-type polynomials. Furthermore, we derive essential recurrence relations and explicit representations for this polynomial class. Most of the results are proven through the utilization of generating function methods. Lastly, we place particular emphasis on investigating the orthogonality relation associated with these polynomials.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
[41]   A Study of Szász-Durremeyer-Type Operators Involving Adjoint Bernoulli Polynomials [J].
Rao, Nadeem ;
Farid, Mohammad ;
Ali, Rehan .
MATHEMATICS, 2024, 12 (23)
[42]   Dual properties of orthogonal polynomials of discrete variables associated with the quantum algebra Uq(su(2)) [J].
R. Álvarez-Nodarse ;
Yu. F. Smirnov .
Journal of Russian Laser Research, 2007, 28 :20-47
[43]   Dual properties of orthogonal polynomials of discrete variables associated with the quantum algebra Uq(su(2)) [J].
Alvarez-Nodarse, R. ;
Smirnov, Yu. F. .
JOURNAL OF RUSSIAN LASER RESEARCH, 2007, 28 (01) :20-47
[44]   Pearson equations for discrete orthogonal polynomials: I. Generalized hypergeometric functions and Toda equations [J].
Manas, Manuel ;
Fernandez-Irisarri, Itsaso ;
Gonzalez-Hernandez, Omar F. .
STUDIES IN APPLIED MATHEMATICS, 2022, 148 (03) :1141-1179
[45]   Some identities of higher order Barnes-type q-Bernoulli polynomials and higher order Barnes-type q-Euler polynomials [J].
Jang, Lee-Chae ;
Choi, Sang-Ki ;
Kwon, Hyuck In .
ADVANCES IN DIFFERENCE EQUATIONS, 2015,
[46]   Some identities of higher order Barnes-type q-Bernoulli polynomials and higher order Barnes-type q-Euler polynomials [J].
Lee-Chae Jang ;
Sang-Ki Choi ;
Hyuck In Kwon .
Advances in Difference Equations, 2015
[47]   A Unification of the Generalized Multiparameter Apostol-type Bernoulli, Euler, Fubini, and Genocchi Polynomials of Higher Order [J].
Acala, Nestor G. .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, 13 (03) :587-607
[48]   Orthonormal Bernoulli polynomials collocation approach for solving stochastic Ito-Volterra integral equations of Abel type [J].
Samadyar, Nasrin ;
Mirzaee, Farshid .
INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2020, 33 (01)
[49]   Δh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _h$$\end{document}-Appell versions of U-Bernoulli and U-Euler polynomials: properties, zero distribution patterns, and the monomiality principleΔh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _h$$\end{document}-Appell versions of U-Bernoulli and U-Euler...W. Ramírez et al. [J].
William Ramírez ;
Stiven Díaz ;
Alejandro Urieles ;
Clemente Cesarano ;
Shahid Ahmad Wani .
Afrika Matematika, 2025, 36 (2)
[50]   Estimation of the reset voltage in resistive RAMs using the charge-flux domain and a numerical method based on quasi-interpolation and discrete orthogonal polynomials [J].
Ibanez, M. J. ;
Jimenez-Molinos, F. ;
Roldan, J. B. ;
Yanez, R. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2019, 164 :120-130