On discrete orthogonal U-Bernoulli Korobov-type polynomials

被引:0
作者
Ramirez, William [1 ,2 ]
Alejandro, Urieles [3 ]
Cesarano, Clemente [2 ]
机构
[1] Univ Costa, Dept Nat & Exact Sci, Calle 58,55-66, Barranquilla 080002, Colombia
[2] UniNettuno Univ, Sect Math, Corso Vittorio Emanuele II,39, I-00186 Rome, Italy
[3] Univ Atlantico, Programa Matemat, Km 7 Via Pto Colombia, Barranquilla, Colombia
来源
CONSTRUCTIVE MATHEMATICAL ANALYSIS | 2024年 / 7卷
关键词
Bernoulli polynomials; U-Bernoulli Korobov; discrete orthogonal polynomials;
D O I
10.33205/cma.1502670
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The primary objective of this paper is to introduce and examine the new class of discrete orthogonal polynomials called U-Bernoulli Korobov-type polynomials. Furthermore, we derive essential recurrence relations and explicit representations for this polynomial class. Most of the results are proven through the utilization of generating function methods. Lastly, we place particular emphasis on investigating the orthogonality relation associated with these polynomials.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 49 条
  • [21] New family of Bernoulli-type polynomials and some application
    Alejandro, Urieles
    William, Ramirez
    Roberto, Herrera
    Maria Jose, Ortega
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2023, 16 (01): : 20 - 30
  • [22] Hecke operators type and generalized Apostol-Bernoulli polynomials
    Aykut Ahmet Aygunes
    Abdelmejid Bayad
    Yilmaz Simsek
    Fixed Point Theory and Applications, 2013
  • [23] BARNES-TYPE DEGENERATE BERNOULLI AND EULER MIXED-TYPE POLYNOMIALS
    Kim, Taekyun
    Kim, Dae San
    Kwon, Hyuckin
    Mansour, Toufik
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (07) : 1273 - 1287
  • [24] Pearson equations for discrete orthogonal polynomials: III—Christoffel and Geronimus transformations
    Manuel Mañas
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [25] A new class of discrete orthogonal polynomials for blind fitting of finite data
    Morales-Mendoza, Luis J.
    Gamboa-Rosales, Hamurabi
    Shmaliy, Yuriy S.
    SIGNAL PROCESSING, 2013, 93 (07) : 1785 - 1793
  • [26] Laguerre-Freud Equations for the Gauss Hypergeometric Discrete Orthogonal Polynomials
    Fernandez-Irisarri, Itsaso
    Manas, Manuel
    MATHEMATICS, 2023, 11 (23)
  • [27] Discrete orthogonal polynomials reduced models based on shift-transformation and discrete Walsh functions
    Wang, Zhao-Hong
    Jiang, Yao-Lin
    Xu, Kang-Li
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2022, 53 (10) : 2045 - 2062
  • [28] RATE OF CONVERGENCE BY KANTOROVICH TYPE OPERATORS INVOLVING ADJOINT BERNOULLI POLYNOMIALS
    Yilmaz, Mine Menekse
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2023, 114 (128): : 51 - 62
  • [29] SZaSZ CHLODOWSKY TYPE OPERATORS COUPLING ADJOINT BERNOULLI'S POLYNOMIALS
    Rao, Nadeem
    Yadav, Avinash Kumar
    Shahzad, Mohammad
    Rani, Mamta
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2025,
  • [30] Pearson equations for discrete orthogonal polynomials: III-Christoffel and Geronimus transformations
    Manas, Manuel
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (04)