On discrete orthogonal U-Bernoulli Korobov-type polynomials

被引:0
作者
Ramirez, William [1 ,2 ]
Alejandro, Urieles [3 ]
Cesarano, Clemente [2 ]
机构
[1] Univ Costa, Dept Nat & Exact Sci, Calle 58,55-66, Barranquilla 080002, Colombia
[2] UniNettuno Univ, Sect Math, Corso Vittorio Emanuele II,39, I-00186 Rome, Italy
[3] Univ Atlantico, Programa Matemat, Km 7 Via Pto Colombia, Barranquilla, Colombia
来源
CONSTRUCTIVE MATHEMATICAL ANALYSIS | 2024年 / 7卷
关键词
Bernoulli polynomials; U-Bernoulli Korobov; discrete orthogonal polynomials;
D O I
10.33205/cma.1502670
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The primary objective of this paper is to introduce and examine the new class of discrete orthogonal polynomials called U-Bernoulli Korobov-type polynomials. Furthermore, we derive essential recurrence relations and explicit representations for this polynomial class. Most of the results are proven through the utilization of generating function methods. Lastly, we place particular emphasis on investigating the orthogonality relation associated with these polynomials.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
[21]   Hecke operators type and generalized Apostol-Bernoulli polynomials [J].
Aygunes, Aykut Ahmet ;
Bayad, Abdelmejid ;
Simsek, Yilmaz .
FIXED POINT THEORY AND APPLICATIONS, 2013,
[22]   New family of Bernoulli-type polynomials and some application [J].
Alejandro, Urieles ;
William, Ramirez ;
Roberto, Herrera ;
Maria Jose, Ortega .
DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2023, 16 (01) :20-30
[23]   Hecke operators type and generalized Apostol-Bernoulli polynomials [J].
Aykut Ahmet Aygunes ;
Abdelmejid Bayad ;
Yilmaz Simsek .
Fixed Point Theory and Applications, 2013
[24]   BARNES-TYPE DEGENERATE BERNOULLI AND EULER MIXED-TYPE POLYNOMIALS [J].
Kim, Taekyun ;
Kim, Dae San ;
Kwon, Hyuckin ;
Mansour, Toufik .
JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (07) :1273-1287
[25]   Pearson equations for discrete orthogonal polynomials: III—Christoffel and Geronimus transformations [J].
Manuel Mañas .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
[26]   A new class of discrete orthogonal polynomials for blind fitting of finite data [J].
Morales-Mendoza, Luis J. ;
Gamboa-Rosales, Hamurabi ;
Shmaliy, Yuriy S. .
SIGNAL PROCESSING, 2013, 93 (07) :1785-1793
[27]   Laguerre-Freud Equations for the Gauss Hypergeometric Discrete Orthogonal Polynomials [J].
Fernandez-Irisarri, Itsaso ;
Manas, Manuel .
MATHEMATICS, 2023, 11 (23)
[28]   Discrete orthogonal polynomials reduced models based on shift-transformation and discrete Walsh functions [J].
Wang, Zhao-Hong ;
Jiang, Yao-Lin ;
Xu, Kang-Li .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2022, 53 (10) :2045-2062
[29]   RATE OF CONVERGENCE BY KANTOROVICH TYPE OPERATORS INVOLVING ADJOINT BERNOULLI POLYNOMIALS [J].
Yilmaz, Mine Menekse .
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2023, 114 (128) :51-62
[30]   SZaSZ CHLODOWSKY TYPE OPERATORS COUPLING ADJOINT BERNOULLI'S POLYNOMIALS [J].
Rao, Nadeem ;
Yadav, Avinash Kumar ;
Shahzad, Mohammad ;
Rani, Mamta .
MATHEMATICAL FOUNDATIONS OF COMPUTING, 2025,