On discrete orthogonal U-Bernoulli Korobov-type polynomials

被引:0
|
作者
Ramirez, William [1 ,2 ]
Alejandro, Urieles [3 ]
Cesarano, Clemente [2 ]
机构
[1] Univ Costa, Dept Nat & Exact Sci, Calle 58,55-66, Barranquilla 080002, Colombia
[2] UniNettuno Univ, Sect Math, Corso Vittorio Emanuele II,39, I-00186 Rome, Italy
[3] Univ Atlantico, Programa Matemat, Km 7 Via Pto Colombia, Barranquilla, Colombia
来源
CONSTRUCTIVE MATHEMATICAL ANALYSIS | 2024年 / 7卷
关键词
Bernoulli polynomials; U-Bernoulli Korobov; discrete orthogonal polynomials;
D O I
10.33205/cma.1502670
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The primary objective of this paper is to introduce and examine the new class of discrete orthogonal polynomials called U-Bernoulli Korobov-type polynomials. Furthermore, we derive essential recurrence relations and explicit representations for this polynomial class. Most of the results are proven through the utilization of generating function methods. Lastly, we place particular emphasis on investigating the orthogonality relation associated with these polynomials.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 49 条
  • [1] On new generalized discrete U-Bernoulli-Korobov-kind polynomials and some of their properties
    Urieles, Alejandro
    Escalante, Jorge Luis
    Ortega, Maria Jose
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2025, 36 (01): : 52 - 69
  • [2] On zeros of discrete orthogonal polynomials
    Krasikov, Ilia
    Zarkh, Alexander
    JOURNAL OF APPROXIMATION THEORY, 2009, 156 (02) : 121 - 141
  • [3] Discrete Bernoulli polynomials and the best constant of the discrete Sobolev inequality
    Nagai, Atsushi
    Kametaka, Yoshinori
    Yamagishi, Hiroyuki
    Takemura, Kazuo
    Watanabe, Kohtaro
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2008, 51 (02): : 307 - 327
  • [4] On discrete orthogonal polynomials of several variables
    Yuan, X
    ADVANCES IN APPLIED MATHEMATICS, 2004, 33 (03) : 615 - 632
  • [5] DISCRETE SEMICLASSICAL ORTHOGONAL POLYNOMIALS OF CLASS ONE
    Dominici, Diego
    Marcellan, Francisco
    PACIFIC JOURNAL OF MATHEMATICS, 2014, 268 (02) : 389 - 411
  • [6] A PARALLEL ALGORITHM FOR GENERATING DISCRETE ORTHOGONAL POLYNOMIALS
    EGECIOGLU, O
    KOC, CK
    PARALLEL COMPUTING, 1992, 18 (06) : 649 - 659
  • [7] A Note on Bernoulli and Euler Type Numbers and Polynomials
    Agyuz, Erkan
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [8] Nonlinear equations for the recurrence coefficients of discrete orthogonal polynomials
    Ismail, Mourad E. H.
    Simeonov, Plamen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 376 (01) : 259 - 274
  • [9] Discrete Orthogonal Polynomials with Hypergeometric Weights and Painleve VI
    Filipuk, Galina
    Van Assche, Walter
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
  • [10] A characterization of the classical orthogonal discrete and q-polynomials
    Alfaro, M.
    Alvarez-Nodarse, R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 201 (01) : 48 - 54