On discrete orthogonal U-Bernoulli Korobov-type polynomials

被引:0
作者
Ramirez, William [1 ,2 ]
Alejandro, Urieles [3 ]
Cesarano, Clemente [2 ]
机构
[1] Univ Costa, Dept Nat & Exact Sci, Calle 58,55-66, Barranquilla 080002, Colombia
[2] UniNettuno Univ, Sect Math, Corso Vittorio Emanuele II,39, I-00186 Rome, Italy
[3] Univ Atlantico, Programa Matemat, Km 7 Via Pto Colombia, Barranquilla, Colombia
来源
CONSTRUCTIVE MATHEMATICAL ANALYSIS | 2024年 / 7卷
关键词
Bernoulli polynomials; U-Bernoulli Korobov; discrete orthogonal polynomials;
D O I
10.33205/cma.1502670
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The primary objective of this paper is to introduce and examine the new class of discrete orthogonal polynomials called U-Bernoulli Korobov-type polynomials. Furthermore, we derive essential recurrence relations and explicit representations for this polynomial class. Most of the results are proven through the utilization of generating function methods. Lastly, we place particular emphasis on investigating the orthogonality relation associated with these polynomials.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 17 条
[1]  
[Anonymous], 1905, ARK MAT ASTR FYSIK
[2]  
[Anonymous], 1996, Math. Notes, V2, P77
[3]  
[Anonymous], 1979, Utilitas Math.
[4]   Boole-Dunkl polynomials and generalizations [J].
Asensi, Alejandro Gil ;
Labarga, Edgar ;
Ceniceros, Judit Minguez ;
Varona, Juan Luis .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (01)
[5]   NONCENTRAL LIMIT-THEOREMS AND APPELL POLYNOMIALS [J].
AVRAM, F ;
TAQQU, MS .
ANNALS OF PROBABILITY, 1987, 15 (02) :767-775
[6]  
Babini J., 1935, REV MAT HISP AM, V10, P23
[7]  
Carlitz L., 1961, Scripta Math., V25, P323
[8]   Approximation properties related to the Bell polynomials [J].
Gavrea, Ioan ;
Ivan, Mircea .
CONSTRUCTIVE MATHEMATICAL ANALYSIS, 2021, 4 (02) :253-259
[9]  
Graham R.L., 1994, Concrete Mathematics: A Foundation for Computer Science
[10]  
Jordan C, 1929, Acta Sci. Math. (Szeged), V4, P130