Enhancing clinical decision-making: An externally validated machine learning model for predicting isocitrate dehydrogenase mutation in gliomas using radiomics from presurgical magnetic resonance imaging

被引:0
作者
Lost, Jan [1 ]
Ashraf, Nader [2 ]
Jekel, Leon [3 ]
von Reppert, Marc [4 ]
Tillmanns, Niklas [5 ]
Willms, Klara [4 ]
Merkaj, Sara [6 ]
Petersen, Gabriel Cassinelli [7 ]
Avesta, Arman [8 ]
Ramakrishnan, Divya [9 ]
Omuro, Antonio [10 ,11 ]
Nabavizadeh, Ali [12 ]
Bakas, Spyridon [13 ]
Bousabarah, Khaled [14 ]
Lin, Mingde [15 ]
Aneja, Sanjay [16 ]
Sabel, Michael [17 ]
Aboian, Mariam [18 ]
机构
[1] Heinrich Heine Univ, Dept Neurosurg, Dusseldorf, Germany
[2] Alfaisal Univ, Coll Med, Riyadh, Saudi Arabia
[3] Univ Hosp Essen, DKFZ Div Translat Neurooncol WTZ, German Canc Consortium, DKTK Partner Site, Essen, Germany
[4] Univ Leipzig, Leipzig, Germany
[5] Univ Dusseldorf, Med Fac, Dept Diagnost & Intervent Radiol, Dusseldorf, Germany
[6] Univ Ulm, Ulm, Germany
[7] Univ Gottingen, Gottingen, Germany
[8] Massachusetts Gen Hosp, Dept Radiol, Boston, MA USA
[9] Yale Sch Med, Dept Radiol & Biomed Imaging, New Haven, CT USA
[10] Yale Sch Med, Dept Neurol, New Haven, CT USA
[11] Yale Sch Med, Yale Canc Ctr, New Haven, CT USA
[12] Univ Penn, Hosp Univ Penn, Perelman Sch Med, Dept Radiol, Philadelphia, PA USA
[13] Indiana Univ Sch Med, Dept Pathol & Lab Med, Div Computat Pathol, Indianapolis, IN USA
[14] Visage Imaging Inc, Berlin, Germany
[15] Visage Imaging Inc, San Diego, CA USA
[16] Yale Sch Med, Dept Therapeut Radiol, New Haven, CT USA
[17] Heinrich Heine Univ, Dept Neurosurg, Dusseldorf, Germany
[18] Childrens Hosp Philadelphia CHOP, Dept Radiol, Philadelphia, PA USA
基金
美国国家卫生研究院;
关键词
gliomas; machine learning; MRI; neuro-oncology; CLASSIFICATION; SYSTEM; GLIOBLASTOMA; PROGNOSIS; SURVIVAL; TUMORS;
D O I
10.1093/noajnl/vdae157
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Glioma, the most prevalent primary brain tumor, poses challenges in prognosis, particularly in the high-grade subclass, despite advanced treatments. The recent shift in tumor classification underscores the crucial role of isocitrate dehydrogenase (IDH) mutation status in the clinical care of glioma patients. However, conventional methods for determining IDH status, including biopsy, have limitations. Exploring the use of machine learning (ML) on magnetic resonance imaging to predict IDH mutation status shows promise but encounters challenges in generalizability and translation into clinical practice because most studies either use single institution or homogeneous datasets for model training and validation. Our study aims to bridge this gap by using multi-institution data for model validation.Methods This retrospective study utilizes data from large, annotated datasets for internal (377 cases from Yale New Haven Hospitals) and external validation (207 cases from facilities outside Yale New Haven Health). The 6-step research process includes image acquisition, semi-automated tumor segmentation, feature extraction, model building with feature selection, internal validation, and external validation. An extreme gradient boosting ML model predicted the IDH mutation status, confirmed by immunohistochemistry.Results The ML model demonstrated high performance, with an Area under the Curve (AUC), Accuracy, Sensitivity, and Specificity in internal validation of 0.862, 0.865, 0.885, and 0.713, and external validation of 0.835, 0.851, 0.850, and 0.847.Conclusions The ML model, built on a heterogeneous dataset, provided robust results in external validation for the prediction task, emphasizing its potential clinical utility. Future research should explore expanding its applicability and validation in diverse global healthcare settings.
引用
收藏
页数:11
相关论文
共 50 条
[21]   "Real world" use of a highly reliable imaging sign: "T2-FLAIR mismatch" for identification of IDH mutant astrocytomas [J].
Jain, Rajan ;
Johnson, Derek R. ;
Patel, Sohil H. ;
Castillo, Mauricio ;
Smits, Marion ;
van den Bent, Martin J. ;
Chi, Andrew S. ;
Cahill, Daniel P. .
NEURO-ONCOLOGY, 2020, 22 (07) :936-943
[22]   Machine Learning Applications for Differentiation of Glioma from Brain Metastasis-A Systematic Review [J].
Jekel, Leon ;
Brim, Waverly R. ;
von Reppert, Marc ;
Staib, Lawrence ;
Petersen, Gabriel Cassinelli ;
Merkaj, Sara ;
Subramanian, Harry ;
Zeevi, Tal ;
Payabvash, Seyedmehdi ;
Bousabarah, Khaled ;
Lin, MingDe ;
Cui, Jin ;
Brackett, Alexandria ;
Mahajan, Amit ;
Omuro, Antonio ;
Johnson, Michele H. ;
Chiang, Veronica L. ;
Malhotra, Ajay ;
Scheffler, Bjorn ;
Aboian, Mariam S. .
CANCERS, 2022, 14 (06)
[23]   Machine Learning for the Prediction of Molecular Markers in Glioma on Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis [J].
Jian, Anne ;
Jang, Kevin ;
Manuguerra, Maurizio ;
Liu, Sidong ;
Magnussen, John ;
Di Ieva, Antonio .
NEUROSURGERY, 2021, 89 (01) :31-44
[24]   2016 Updates to the WHO Brain Tumor Classification System: What the Radiologist Needs to Know [J].
Johnson, Derek R. ;
Guerin, Julie B. ;
Giannini, Caterina ;
Morris, Jonathan M. ;
Eckel, Lawrence J. ;
Kaufmann, Timothy J. .
RADIOGRAPHICS, 2017, 37 (07) :2164-2180
[25]   Imaging signatures of glioblastoma molecular characteristics: A radiogenomics review [J].
Kazerooni, Anahita Fathi ;
Bakas, Spyridon ;
Rad, Hamidreza Saligheh ;
Davatzikos, Christos .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 52 (01) :54-69
[26]   Validation of MRI-Based Models to Predict MGMT Promoter Methylation in Gliomas: BraTS 2021 Radiogenomics Challenge [J].
Kim, Byung-Hoon ;
Lee, Hyeonhoon ;
Choi, Kyu Sung ;
Nam, Ju Gang ;
Park, Chul-Kee ;
Park, Sung-Hye ;
Chung, Jin Wook ;
Choi, Seung Hong .
CANCERS, 2022, 14 (19)
[27]   CheckList for EvaluAtion of Radiomics research (CLEAR): a step-by-step reporting guideline for authors and reviewers endorsed by ESR and EuSoMII [J].
Kocak, Burak ;
Baessler, Bettina ;
Bakas, Spyridon ;
Cuocolo, Renato ;
Fedorov, Andrey ;
Maier-Hein, Lena ;
Mercaldo, Nathaniel ;
Mueller, Henning ;
Orlhac, Fanny ;
Pinto dos Santos, Daniel ;
Stanzione, Arnaldo ;
Ugga, Lorenzo ;
Zwanenburg, Alex .
INSIGHTS INTO IMAGING, 2023, 14 (01)
[28]   Machine-Learning-Based Radiomics for Classifying Glioma Grade from Magnetic Resonance Images of the Brain [J].
Kumar, Anuj ;
Jha, Ashish Kumar ;
Agarwal, Jai Prakash ;
Yadav, Manender ;
Badhe, Suvarna ;
Sahay, Ayushi ;
Epari, Sridhar ;
Sahu, Arpita ;
Bhattacharya, Kajari ;
Chatterjee, Abhishek ;
Ganeshan, Balaji ;
Rangarajan, Venkatesh ;
Moyiadi, Aliasgar ;
Gupta, Tejpal ;
Goda, Jayant S. .
JOURNAL OF PERSONALIZED MEDICINE, 2023, 13 (06)
[29]   External Validation of a Machine Learning Algorithm for Predicting Clinically Meaningful Functional Improvement After Arthroscopic Hip Preservation Surgery [J].
Kunze, Kyle N. ;
Kaidi, Austin ;
Madjarova, Sophia ;
Polce, Evan M. ;
Ranawat, Anil S. ;
Nawabi, Danyal H. ;
Kelly, Bryan T. ;
Nho, Shane J. ;
Nwachukwu, Benedict U. .
AMERICAN JOURNAL OF SPORTS MEDICINE, 2022, 50 (13) :3593-3599
[30]   An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas [J].
Li, Guanzhang ;
Li, Lin ;
Li, Yiming ;
Qian, Zenghui ;
Wu, Fan ;
He, Yufei ;
Jiang, Haoyu ;
Li, Renpeng ;
Wang, Di ;
Zhai, You ;
Wang, Zhiliang ;
Jiang, Tao ;
Zhang, Jing ;
Zhang, Wei .
BRAIN, 2022, 145 (03) :1151-1161