Applications of Generalized Hypergeometric Distribution on Comprehensive Families of Analytic Functions

被引:0
作者
Al-Hawary, Tariq [1 ,2 ]
Frasin, Basem [3 ]
Aldawish, Ibtisam [4 ]
机构
[1] Al Balqa Appl Univ, Ajloun Coll, Dept Appl Sci, Ajloun 26816, Jordan
[2] Jadara Univ, Jadara Res Ctr, Irbid 21110, Jordan
[3] Al Al Bayt Univ, Fac Sci, Dept Math, Mafraq 25113, Jordan
[4] IMSIU Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Math & Stat Dept, Riyadh 11623, Saudi Arabia
关键词
analytic function; geometric functions; hypergeometric distribution; poisson distribution; UNIVALENT-FUNCTIONS; SUBCLASSES;
D O I
10.3390/math12182851
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sequence of n trials from a finite population with no replacement is described by the hypergeometric distribution as the number of successes. Calculating the likelihood that factory-produced items would be defective is one of the most popular uses of the hypergeometric distribution in industrial quality control. Very recently, several researchers have applied this distribution on certain families of analytic functions. In this study, we provide certain adequate criteria for the generalized hypergeometric distribution series to be in two families of analytic functions defined in the open unit disk. Furthermore, we consider an integral operator for the hypergeometric distribution. Some corollaries will be implied from our main results.
引用
收藏
页数:11
相关论文
共 18 条
  • [1] Ahmad M.S., 2015, Sci.Int. (Lahore), V27, P2989
  • [2] An application of Mittag-Leffler-type Poisson distribution on certain subclasses of analytic functions associated with conic domains
    Ahmad, Morad
    Frasin, Basem
    Murugusundaramoorthy, Gangadharan
    Al-Khazaleh, Ahmad
    [J]. HELIYON, 2021, 7 (10)
  • [3] On certain subclasses of univalent functions of complex order associated with poisson distribution series
    Altunhan, Aslihan
    Sumer Eker, Sevtap
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (03): : 1023 - 1034
  • [4] An Application of Miller-Ross-Type Poisson Distribution on Certain Subclasses of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials
    Amourah, Ala
    Frasin, Basem Aref
    Seoudy, Tamer M.
    [J]. MATHEMATICS, 2022, 10 (14)
  • [5] Bharati R., 1997, Tamkang J. Math, V28, P17, DOI DOI 10.5556/J.TKJM.28.1997.4330
  • [6] DIXIT KK, 1995, INDIAN J PURE AP MAT, V26, P889
  • [7] Pascal Distribution Series Connected with Certain Subclasses of Univalent Functions
    El-Deeb, Sheeza M.
    Bulboaca, Teodor
    Dziok, Jacek
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2019, 59 (02): : 301 - 314
  • [8] Murugusundaramoorthy G, 2010, International Journal of Nonlinear Science, V4, P430
  • [9] Nazeer W., 2019, J. Comput. Anal. Appl, V26, P11
  • [10] Porwal S., 2018, Acta Univ. Apulensis Math. Inform, V56, P69, DOI [10.17114/j.aua.2018.56.06, DOI 10.17114/J.AUA.2018.56.06]