A Machine Learning Model Using Cardiac CT and MRI Data Predicts Cardiovascular Events in Obstructive Coronary Artery Disease

被引:0
作者
Pezel, Theo [1 ,2 ,3 ,4 ,5 ,6 ]
Toupin, Solenn [2 ,7 ]
Bousson, Valerie [4 ]
Hamzi, Kenza [1 ,2 ,3 ]
Hovasse, Thomas [5 ,6 ]
Lefevre, Thierry [6 ]
Chevalier, Bernard [6 ]
Unterseeh, Thierry [6 ]
Sanguineti, Francesca [5 ,6 ]
Champagne, Stephane [5 ,6 ]
Benamer, Hakim [6 ]
Neylon, Antoinette [6 ]
Akodad, Mariama [6 ]
Ah-Sing, Tania [3 ]
Hamzi, Lounis [4 ]
Goncalves, Trecy [1 ,2 ,3 ,4 ]
Lequipar, Antoine [1 ,2 ,3 ]
Gall, Emmanuel [1 ,2 ,3 ]
Unger, Alexandre [1 ,2 ,3 ,8 ]
Dillinger, Jean Guillaume [1 ,2 ,3 ]
Henry, Patrick [1 ,2 ,3 ]
Vignaux, Olivier [9 ]
Sirol, Marc [9 ]
Garot, Philippe [5 ,6 ]
Garot, Jerome [5 ,6 ]
机构
[1] Univ Paris Cite, Univ Hosp Lariboisiere, AP HP, Dept Cardiol, Paris, France
[2] Univ Paris Cite, Univ Hosp Lariboisiere, AP HP, MIRACLai Multimodal Imaging Res & Anal Core Lab, Paris, France
[3] Univ Paris Cite, Univ Hosp Lariboisiere, AP HP, Inserm,MASCOT,UMRS 942, Paris, France
[4] Univ Paris Cite, Univ Hosp Lariboisiere, AP HP, Dept Radiol, Paris, France
[5] Hop Prive Jacques CARTIER, Inst Cardiovasc Paris Sud, Cardiovasc Magnet Resonance Lab, Ramsay St, 6 Ave Noyer Lambert, F-91300 Massy, France
[6] Hop Prive Jacques Cartier, Inst Cardiovasc Paris Sud, Cardiac Computed Tomog Lab, Ramsay St, 6 Ave Noyer Lambert, F-91300 Massy, France
[7] Siemens Healthcare France, Sci Partnerships, St Denis, France
[8] Hop Univ Bruxelles, Hop Erasme, Dept Cardiol, Brussels, Belgium
[9] Amer Hosp Paris, Dept Cardiovasc Imaging, Neuilly, France
关键词
COMPUTED TOMOGRAPHIC ANGIOGRAPHY; AMERICAN-HEART-ASSOCIATION; APPROPRIATE USE CRITERIA; MAGNETIC-RESONANCE; PROGNOSTIC VALUE; TASK-FORCE; NUCLEAR CARDIOLOGY; END-POINTS; SOCIETY; RISK;
D O I
10.1148/radiol.233030
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Multimodality imaging is essential for personalized prognostic stratification in suspected coronary artery disease (CAD). Machine learning (ML) methods can help address this complexity by incorporating a broader spectrum of variables. Purpose: To investigate the performance of an ML model that uses both stress cardiac MRI and coronary CT angiography (CCTA) data to predict major adverse cardiovascular events (MACE) in patients with newly diagnosed CAD. Materials and Methods: This retrospective study included consecutive symptomatic patients without known CAD referred for CCTA between December 2008 and January 2020. Patients with obstructive CAD (at least one >= 50% stenosis at CCTA) underwent stress cardiac MRI for functional assessment. Eighteen clinical, two electrocardiogram, nine CCTA, and 12 cardiac MRI parameters were evaluated as inputs for the ML model, which involved automated feature selection with the least absolute shrinkage and selection operator algorithm and model building with an XGBoost algorithm. The primary outcome was MACE, defined as a composite of cardiovascular death and nonfatal myocardial infarction. External testing was performed using two independent datasets. Performance was compared between the ML model and existing scores and other approaches using the area under the receiver operating characteristic curve (AUC). Results: Of 2210 patients who completed cardiac MRI, 2038 (mean age, 70 years +/- 12 [SD]; 1091 [53.5%] female participants) completed follow-up (median duration, 7 years [IQR, 6-9 years]); 281 experienced MACE (13.8%). The ML model exhibited a higher AUC (0.86) for MACE prediction than the European Society of Cardiology score (0.55), QRISK3 score (0.60), Framingham Risk Score (0.50), segment involvement score (0.71), CCTA data alone (0.76), or stress cardiac MRI data alone (0.83) (P value range, <.001 to .004). The ML model also exhibited good performance in the two external validation datasets (AUC, 0.84 and 0.92). Conclusion: An ML model including both CCTA and stress cardiac MRI data demonstrated better performance in predicting MACE than traditional methods and existing scores in patients with newly diagnosed CAD. (c) RSNA, 2025
引用
收藏
页数:11
相关论文
共 50 条
[41]   The triglyceride-glucose index predicts 1-year major adverse cardiovascular events in end-stage renal disease patients with coronary artery disease [J].
Xie, Enmin ;
Ye, Zixiang ;
Wu, Yaxin ;
Zhao, Xuecheng ;
Li, Yike ;
Shen, Nan ;
Gao, Yanxiang ;
Zheng, Jingang .
CARDIOVASCULAR DIABETOLOGY, 2023, 22 (01)
[42]   Detection of Obstructive Coronary Artery Disease Using Regadenoson Stress and 82Rb PET/CT Myocardial Perfusion Imaging [J].
Hsiao, Edward ;
Ali, Bilal ;
Blankstein, Ron ;
Skali, Hicham ;
Ali, Towhid ;
Bruyere, John, Jr. ;
Kwong, Raymond Y. ;
Di Carli, Marcelo F. ;
Dorbala, Sharmila .
JOURNAL OF NUCLEAR MEDICINE, 2013, 54 (10) :1748-1754
[43]   Clinical Implication of Machine Learning in Predicting the Occurrence of Cardiovascular Disease Using Big Data (Nationwide Cohort Data in Korea) [J].
Joo, Gihun ;
Song, Yeongjin ;
Im, Hyeonseung ;
Park, Junbeom .
IEEE ACCESS, 2020, 8 :157643-157653
[44]   Obstructive sleep apnea predicts 10-year cardiovascular disease-related mortality in the Sleep Heart Health Study: a machine learning approach [J].
Li, Ao ;
Roveda, Janet M. ;
Powers, Linda S. ;
Quan, Stuart F. .
JOURNAL OF CLINICAL SLEEP MEDICINE, 2022, 18 (02) :497-504
[45]   The effectiveness of coronary computed tomography angiography and functional testing for the diagnosis of obstructive coronary artery disease: results from the individual patient data Collaborative Meta-Analysis of Cardiac CT (COME-CCT) [J].
Schlattmann, Peter ;
Wieske, Viktoria ;
Bressem, Keno K. ;
Goetz, Theresa ;
Schuetz, Georg M. ;
Andreini, Daniele ;
Pontone, Gianluca ;
Alkadhi, Hatem ;
Hausleiter, Joerg ;
Zimmermann, Elke ;
Gerber, Bernhard ;
Shabestari, Abbas A. ;
Meijs, Matthijs F. L. ;
Sato, Akira ;
Ovrehus, Kristian A. ;
Jenkins, Shona M. M. ;
Knuuti, Juhani ;
Hamdan, Ashraf ;
Halvorsen, Bjorn A. ;
Mendoza-Rodriguez, Vladimir ;
Rixe, Johannes ;
Wan, Yung-Liang ;
Langer, Christoph ;
Leschka, Sebastian ;
Martuscelli, Eugenio ;
Ghostine, Said ;
Tardif, Jean-Claude ;
Sanchez, Alejandra Rodriguez ;
Haase, Robert ;
Dewey, Marc .
INSIGHTS INTO IMAGING, 2024, 15 (01)
[46]   Discrimination between Obstructive Coronary Artery Disease and Cardiac Syndrome X in Women with Typical Angina and Positive Exercise Test; Utility of Cardiovascular Risk Calculators [J].
Saadat, Mohammad ;
Masoudkabir, Farzad ;
Afarideh, Mohsen ;
Ghodsi, Saeed ;
Vasheghani-Farahani, Ali .
MEDICINA-LITHUANIA, 2019, 55 (01)
[47]   NATURAL LANGUAGE PROCESSING BASED MACHINE LEARNING MODEL USING CARDIAC MRI REPORTS TO IDENTIFY HYPERTROPHIC CARDIOMYOPATHY PATIENTS [J].
Sundaram, Divaakar Siva Baala ;
Arunachalam, Shivaram P. ;
Damani, Devanshi N. ;
Farahani, Nasibeh Z. ;
Enayati, Moein ;
Pasupathy, Kalyan S. ;
Arruda-Olson, Adelaide M. .
PROCEEDINGS OF THE 2021 DESIGN OF MEDICAL DEVICES CONFERENCE (DMD2021), 2021,
[48]   Visual Ordinal Coronary Artery Calcium Score from Non-Gated Chest CT Predicts Mortality After Severe Chronic Obstructive Pulmonary Disease Exacerbation [J].
Xu, Huiying ;
Sen Yew, Min .
INTERNATIONAL JOURNAL OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE, 2023, 18 :3115-3124
[49]   A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography [J].
Oikonomou, Evangelos K. ;
Williams, Michelle C. ;
Kotanidis, Christos P. ;
Desai, Milind Y. ;
Marwan, Mohamed ;
Antonopoulos, Alexios S. ;
Thomas, Katharine E. ;
Thomas, Sheena ;
Akoumianakis, Ioannis ;
Fan, Lampson M. ;
Kesavan, Sujatha ;
Herdman, Laura ;
Alashi, Alaa ;
Centeno, Erika Hutt ;
Lyasheva, Maria ;
Griffin, Brian P. ;
Flamm, Scott D. ;
Shirodaria, Cheerag ;
Sabharwal, Nikant ;
Kelion, Andrew ;
Dweck, Marc R. ;
Van Beek, Edwin J. R. ;
Deanfield, John ;
Hopewell, Jemma C. ;
Neubauer, Stefan ;
Channon, Keith M. ;
Achenbach, Stephan ;
Newby, David E. ;
Antoniades, Charalambos .
EUROPEAN HEART JOURNAL, 2019, 40 (43) :3529-3543
[50]   Multimodal prediction of major adverse cardiovascular events in hypertensive patients with coronary artery disease: integrating pericoronary fat radiomics, CT-FFR, and clinicoradiological features [J].
Zou, Qing ;
Qiu, Taichun ;
Liang, Chunxiao ;
Wang, Fang ;
Zheng, Yongji ;
Li, Jie ;
Li, Xingchen ;
Li, Yudan ;
Lu, Zhongyan ;
Ming, Bing .
RADIOLOGIA MEDICA, 2025, 130 (06) :767-781