A Machine Learning Model Using Cardiac CT and MRI Data Predicts Cardiovascular Events in Obstructive Coronary Artery Disease

被引:1
作者
Pezel, Theo [1 ,2 ,3 ,4 ,5 ,6 ]
Toupin, Solenn [2 ,7 ]
Bousson, Valerie [4 ]
Hamzi, Kenza [1 ,2 ,3 ]
Hovasse, Thomas [5 ,6 ]
Lefevre, Thierry [6 ]
Chevalier, Bernard [6 ]
Unterseeh, Thierry [6 ]
Sanguineti, Francesca [5 ,6 ]
Champagne, Stephane [5 ,6 ]
Benamer, Hakim [6 ]
Neylon, Antoinette [6 ]
Akodad, Mariama [6 ]
Ah-Sing, Tania [3 ]
Hamzi, Lounis [4 ]
Goncalves, Trecy [1 ,2 ,3 ,4 ]
Lequipar, Antoine [1 ,2 ,3 ]
Gall, Emmanuel [1 ,2 ,3 ]
Unger, Alexandre [1 ,2 ,3 ,8 ]
Dillinger, Jean Guillaume [1 ,2 ,3 ]
Henry, Patrick [1 ,2 ,3 ]
Vignaux, Olivier [9 ]
Sirol, Marc [9 ]
Garot, Philippe [5 ,6 ]
Garot, Jerome [5 ,6 ]
机构
[1] Univ Paris Cite, Univ Hosp Lariboisiere, AP HP, Dept Cardiol, Paris, France
[2] Univ Paris Cite, Univ Hosp Lariboisiere, AP HP, MIRACLai Multimodal Imaging Res & Anal Core Lab, Paris, France
[3] Univ Paris Cite, Univ Hosp Lariboisiere, AP HP, Inserm,MASCOT,UMRS 942, Paris, France
[4] Univ Paris Cite, Univ Hosp Lariboisiere, AP HP, Dept Radiol, Paris, France
[5] Hop Prive Jacques CARTIER, Inst Cardiovasc Paris Sud, Cardiovasc Magnet Resonance Lab, Ramsay St, 6 Ave Noyer Lambert, F-91300 Massy, France
[6] Hop Prive Jacques Cartier, Inst Cardiovasc Paris Sud, Cardiac Computed Tomog Lab, Ramsay St, 6 Ave Noyer Lambert, F-91300 Massy, France
[7] Siemens Healthcare France, Sci Partnerships, St Denis, France
[8] Hop Univ Bruxelles, Hop Erasme, Dept Cardiol, Brussels, Belgium
[9] Amer Hosp Paris, Dept Cardiovasc Imaging, Neuilly, France
关键词
COMPUTED TOMOGRAPHIC ANGIOGRAPHY; AMERICAN-HEART-ASSOCIATION; APPROPRIATE USE CRITERIA; MAGNETIC-RESONANCE; PROGNOSTIC VALUE; TASK-FORCE; NUCLEAR CARDIOLOGY; END-POINTS; SOCIETY; RISK;
D O I
10.1148/radiol.233030
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Multimodality imaging is essential for personalized prognostic stratification in suspected coronary artery disease (CAD). Machine learning (ML) methods can help address this complexity by incorporating a broader spectrum of variables. Purpose: To investigate the performance of an ML model that uses both stress cardiac MRI and coronary CT angiography (CCTA) data to predict major adverse cardiovascular events (MACE) in patients with newly diagnosed CAD. Materials and Methods: This retrospective study included consecutive symptomatic patients without known CAD referred for CCTA between December 2008 and January 2020. Patients with obstructive CAD (at least one >= 50% stenosis at CCTA) underwent stress cardiac MRI for functional assessment. Eighteen clinical, two electrocardiogram, nine CCTA, and 12 cardiac MRI parameters were evaluated as inputs for the ML model, which involved automated feature selection with the least absolute shrinkage and selection operator algorithm and model building with an XGBoost algorithm. The primary outcome was MACE, defined as a composite of cardiovascular death and nonfatal myocardial infarction. External testing was performed using two independent datasets. Performance was compared between the ML model and existing scores and other approaches using the area under the receiver operating characteristic curve (AUC). Results: Of 2210 patients who completed cardiac MRI, 2038 (mean age, 70 years +/- 12 [SD]; 1091 [53.5%] female participants) completed follow-up (median duration, 7 years [IQR, 6-9 years]); 281 experienced MACE (13.8%). The ML model exhibited a higher AUC (0.86) for MACE prediction than the European Society of Cardiology score (0.55), QRISK3 score (0.60), Framingham Risk Score (0.50), segment involvement score (0.71), CCTA data alone (0.76), or stress cardiac MRI data alone (0.83) (P value range, <.001 to .004). The ML model also exhibited good performance in the two external validation datasets (AUC, 0.84 and 0.92). Conclusion: An ML model including both CCTA and stress cardiac MRI data demonstrated better performance in predicting MACE than traditional methods and existing scores in patients with newly diagnosed CAD. (c) RSNA, 2025
引用
收藏
页数:11
相关论文
共 50 条
[31]   Comparison of Machine Learning Models in Prediction of Cardiovascular Disease Using Health Record Data [J].
Maiga, Jaouja ;
Hungilo, Gilbert Gutabaga ;
Pranowo .
2019 INTERNATIONAL CONFERENCE ON INFORMATICS, MULTIMEDIA, CYBER AND INFORMATION SYSTEM (ICIMCIS), 2019, :45-48
[32]   Predicting angiographic coronary artery disease using machine learning and high-frequency QRS [J].
Zhang, Jiajia ;
Zhang, Heng ;
Wei, Ting ;
Kang, Pinfang ;
Tang, Bi ;
Wang, Hongju .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
[33]   Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning [J].
Makino, Masaki ;
Yoshimoto, Ryo ;
Ono, Masaki ;
Itoko, Toshinari ;
Katsuki, Takayuki ;
Koseki, Akira ;
Kudo, Michiharu ;
Haida, Kyoichi ;
Kuroda, Jun ;
Yanagiya, Ryosuke ;
Saitoh, Eiichi ;
Hoshinaga, Kiyotaka ;
Yuzawa, Yukio ;
Suzuki, Atsushi .
SCIENTIFIC REPORTS, 2019, 9 (1)
[34]   Predicting Future Cardiovascular Events in Patients With Peripheral Artery Disease Using Electronic Health Record Data [J].
Ross, Elsie Gyang ;
Jung, Kenneth ;
Dudley, Joel T. ;
Li, Li ;
Leeper, Nicholas J. ;
Shah, Nigam H. .
CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2019, 12 (03)
[35]   Predicting major adverse cardiovascular events after orthotopic liver transplantation using a supervised machine learning model: A cohort study [J].
Soldera, Jonathan ;
Corso, Leandro Luis ;
Rech, Matheus Machado ;
Ballotin, Vinicius Remus ;
Bigarella, Lucas Goldmann ;
Tome, Fernanda ;
Moraes, Nathalia ;
Balbinot, Rafael Sartori ;
Rodriguez, Santiago ;
Brandao, Ajacio Bandeira de Mello ;
Hochhegger, Bruno .
WORLD JOURNAL OF HEPATOLOGY, 2024, 16 (02) :193-210
[36]   Cardiac events after using clarithromycin for anti-Helicobacter pylori therapy in patients with coronary artery disease [J].
Lin, Cheng-Kuan ;
Lee, Tzong-Hsi ;
Liao, Pen-Chih ;
Lin, Cheng-Lu .
MEDICINE, 2023, 102 (45) :E35922
[37]   Noninvasive detection of increased carotid artery temperature in patients with coronary artery disease predicts major cardiovascular events at one year: Results from a prospective multicenter study [J].
Toutouzas, Konstantinos ;
Benetos, Georgios ;
Koutagiar, Iosif ;
Barampoutis, Nikolaos ;
Mitropoulou, Fotini ;
Davlouros, Periklis ;
Sfikakis, Petros P. ;
Alexopoulos, Dimitrios ;
Stefanadis, Christodoulos ;
Siores, Elias ;
Tousoulis, Dimitris .
ATHEROSCLEROSIS, 2017, 262 :25-30
[38]   Relation of High-sensitivity Cardiac Troponin I Elevation With Exercise to Major Adverse Cardiovascular Events in Patients With Coronary Artery Disease [J].
Lima, Bruno B. ;
Hammadah, Muhammad ;
Kim, Jeong Hwan ;
Uphoff, Irina ;
Shah, Amit ;
Levantsevych, Oleksiy ;
Almuwaqqat, Zakaria ;
Moazzami, Kasra ;
Sullivan, Samaah ;
Ward, Laura ;
Sun, Yan ;
Kutner, Michael ;
Ko, Yi-An ;
Sheps, David S. ;
Beshiri, Agim ;
Murtagh, Gillian ;
Bremner, J. Douglas ;
Vaccarino, Viola ;
Quyyumi, Arshed A. .
AMERICAN JOURNAL OF CARDIOLOGY, 2020, 136 :1-8
[39]   A multimodal deep learning framework for automated major adverse cardiovascular events prediction in patients with end-stage renal disease integrating clinical and cardiac MRI data [J].
Sun, Xinyue ;
Guan, Siyu ;
Wu, Lianming ;
Zhang, Tianyi ;
Ying, Liang .
DISPLAYS, 2025, 88
[40]   Ensemble Machine Learning and Its Validation for Prediction of Coronary Artery Disease and Acute Coronary Syndrome Using Focused Carotid Ultrasound [J].
Jamthikar, Ankush D. ;
Gupta, Deep ;
Mantella, Laura E. ;
Saba, Luca ;
Johri, Amer M. ;
Suri, Jasjit S. .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71