A Machine Learning Model Using Cardiac CT and MRI Data Predicts Cardiovascular Events in Obstructive Coronary Artery Disease

被引:1
作者
Pezel, Theo [1 ,2 ,3 ,4 ,5 ,6 ]
Toupin, Solenn [2 ,7 ]
Bousson, Valerie [4 ]
Hamzi, Kenza [1 ,2 ,3 ]
Hovasse, Thomas [5 ,6 ]
Lefevre, Thierry [6 ]
Chevalier, Bernard [6 ]
Unterseeh, Thierry [6 ]
Sanguineti, Francesca [5 ,6 ]
Champagne, Stephane [5 ,6 ]
Benamer, Hakim [6 ]
Neylon, Antoinette [6 ]
Akodad, Mariama [6 ]
Ah-Sing, Tania [3 ]
Hamzi, Lounis [4 ]
Goncalves, Trecy [1 ,2 ,3 ,4 ]
Lequipar, Antoine [1 ,2 ,3 ]
Gall, Emmanuel [1 ,2 ,3 ]
Unger, Alexandre [1 ,2 ,3 ,8 ]
Dillinger, Jean Guillaume [1 ,2 ,3 ]
Henry, Patrick [1 ,2 ,3 ]
Vignaux, Olivier [9 ]
Sirol, Marc [9 ]
Garot, Philippe [5 ,6 ]
Garot, Jerome [5 ,6 ]
机构
[1] Univ Paris Cite, Univ Hosp Lariboisiere, AP HP, Dept Cardiol, Paris, France
[2] Univ Paris Cite, Univ Hosp Lariboisiere, AP HP, MIRACLai Multimodal Imaging Res & Anal Core Lab, Paris, France
[3] Univ Paris Cite, Univ Hosp Lariboisiere, AP HP, Inserm,MASCOT,UMRS 942, Paris, France
[4] Univ Paris Cite, Univ Hosp Lariboisiere, AP HP, Dept Radiol, Paris, France
[5] Hop Prive Jacques CARTIER, Inst Cardiovasc Paris Sud, Cardiovasc Magnet Resonance Lab, Ramsay St, 6 Ave Noyer Lambert, F-91300 Massy, France
[6] Hop Prive Jacques Cartier, Inst Cardiovasc Paris Sud, Cardiac Computed Tomog Lab, Ramsay St, 6 Ave Noyer Lambert, F-91300 Massy, France
[7] Siemens Healthcare France, Sci Partnerships, St Denis, France
[8] Hop Univ Bruxelles, Hop Erasme, Dept Cardiol, Brussels, Belgium
[9] Amer Hosp Paris, Dept Cardiovasc Imaging, Neuilly, France
关键词
COMPUTED TOMOGRAPHIC ANGIOGRAPHY; AMERICAN-HEART-ASSOCIATION; APPROPRIATE USE CRITERIA; MAGNETIC-RESONANCE; PROGNOSTIC VALUE; TASK-FORCE; NUCLEAR CARDIOLOGY; END-POINTS; SOCIETY; RISK;
D O I
10.1148/radiol.233030
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Multimodality imaging is essential for personalized prognostic stratification in suspected coronary artery disease (CAD). Machine learning (ML) methods can help address this complexity by incorporating a broader spectrum of variables. Purpose: To investigate the performance of an ML model that uses both stress cardiac MRI and coronary CT angiography (CCTA) data to predict major adverse cardiovascular events (MACE) in patients with newly diagnosed CAD. Materials and Methods: This retrospective study included consecutive symptomatic patients without known CAD referred for CCTA between December 2008 and January 2020. Patients with obstructive CAD (at least one >= 50% stenosis at CCTA) underwent stress cardiac MRI for functional assessment. Eighteen clinical, two electrocardiogram, nine CCTA, and 12 cardiac MRI parameters were evaluated as inputs for the ML model, which involved automated feature selection with the least absolute shrinkage and selection operator algorithm and model building with an XGBoost algorithm. The primary outcome was MACE, defined as a composite of cardiovascular death and nonfatal myocardial infarction. External testing was performed using two independent datasets. Performance was compared between the ML model and existing scores and other approaches using the area under the receiver operating characteristic curve (AUC). Results: Of 2210 patients who completed cardiac MRI, 2038 (mean age, 70 years +/- 12 [SD]; 1091 [53.5%] female participants) completed follow-up (median duration, 7 years [IQR, 6-9 years]); 281 experienced MACE (13.8%). The ML model exhibited a higher AUC (0.86) for MACE prediction than the European Society of Cardiology score (0.55), QRISK3 score (0.60), Framingham Risk Score (0.50), segment involvement score (0.71), CCTA data alone (0.76), or stress cardiac MRI data alone (0.83) (P value range, <.001 to .004). The ML model also exhibited good performance in the two external validation datasets (AUC, 0.84 and 0.92). Conclusion: An ML model including both CCTA and stress cardiac MRI data demonstrated better performance in predicting MACE than traditional methods and existing scores in patients with newly diagnosed CAD. (c) RSNA, 2025
引用
收藏
页数:11
相关论文
共 50 条
[21]   Higher Activation of the Rostromedial Prefrontal Cortex During Mental Stress Predicts Major Cardiovascular Disease Events in Individuals With Coronary Artery Disease [J].
Moazzami, Kasra ;
Wittbrodt, Matthew T. ;
Lima, Bruno B. ;
Nye, Jonathon A. ;
Mehta, Puja K. ;
Pearce, Brad D. ;
Almuwaqqat, Zakaria ;
Hammadah, Muhammad ;
Levantsevych, Oleksiy ;
Sun, Yan V. ;
Raggi, Paolo ;
Garcia, Ernest V. ;
Goetz, Margarethe ;
Quyyumi, Arshed A. ;
Bremner, J. Douglas ;
Vaccarino, Viola ;
Shah, Amit J. .
CIRCULATION, 2020, 142 (05) :455-465
[22]   Prediction of long-term adverse cardiovascular events after percutaneous coronary interventions in patients with coronary artery disease and concomitant chronic obstructive pulmonary disease [J].
Zafiraki, V. K. ;
Skaletskiy, K. V. ;
Namitokov, A. M. ;
Shulzhenko, L. V. ;
Kosmacheva, Ye. D. ;
Pershukov, I. V. .
KARDIOLOGIYA, 2020, 60 (05) :115-122
[23]   Machine learning insight into the role of imaging and clinical variables for the prediction of obstructive coronary artery disease and revascularization: An exploratory analysis of the CONSERVE study [J].
Baskaran, Lohendran ;
Ying, Xiaohan ;
Xu, Zhuoran ;
Al'Aref, Subhi J. ;
Lee, Benjamin C. ;
Lee, Sang-Eun ;
Danad, Ibrahim ;
Park, Hyung-Bok ;
Bathina, Ravi ;
Baggiano, Andrea ;
Beltrama, Virginia ;
Cerci, Rodrigo ;
Choi, Eui-Young ;
Choi, Jung-Hyun ;
Choi, So-Yeon ;
Cole, Jason ;
Doh, Joon-Hyung ;
Ha, Sang-Jin ;
Her, Ae-Young ;
Kepka, Cezary ;
Kim, Jang-Young ;
Kim, Jin-Won ;
Kim, Sang-Wook ;
Kim, Woong ;
Lu, Yao ;
Kumar, Amit ;
Heo, Ran ;
Lee, Ji Hyun ;
Sung, Ji-min ;
Valeti, Uma ;
Andreini, Daniele ;
Pontone, Gianluca ;
Han, Donghee ;
Villines, Todd C. ;
Lin, Fay ;
Chang, Hyuk-Jae ;
Min, James K. ;
Shaw, Leslee J. .
PLOS ONE, 2020, 15 (06)
[24]   Machine Learning Coronary Artery Disease Prediction Based on Imaging and Non-Imaging Data [J].
Kigka, Vassiliki I. ;
Georga, Eleni ;
Tsakanikas, Vassilis ;
Kyriakidis, Savvas ;
Tsompou, Panagiota ;
Siogkas, Panagiotis ;
Michalis, Lampros K. ;
Naka, Katerina K. ;
Neglia, Danilo ;
Rocchiccioli, Silvia ;
Pelosi, Gualtiero ;
Fotiadis, Dimitrios I. ;
Sakellarios, Antonis .
DIAGNOSTICS, 2022, 12 (06)
[25]   Machine learning-based predictive models for perioperative major adverse cardiovascular events in patients with stable coronary artery disease undergoing noncardiac surgery [J].
Shen, Liang ;
Jin, Yunpeng ;
Pan, Axiang ;
Wang, Kai ;
Ye, Runze ;
Lin, Yangkai ;
Anwar, Safraz ;
Xia, Weicong ;
Zhou, Min ;
Guo, Xiaogang .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2025, 260
[26]   Trimethylamine N-oxide predicts cardiovascular events in coronary artery disease patients with diabetes mellitus: a prospective cohort study [J].
Yu, Xue ;
Wang, Yijia ;
Yang, Ruiyue ;
Wang, Zhe ;
Wang, Xinyue ;
Wang, Siming ;
Zhang, Wenduo ;
Dong, Jun ;
Chen, Wenxiang ;
Ji, Fusui ;
Gao, Wei .
FRONTIERS IN ENDOCRINOLOGY, 2024, 15
[27]   Prognostic Value of Machine Learning-based Time-to-Event Analysis Using Coronary CT Angiography in Patients with Suspected Coronary Artery Disease [J].
Bauer, Maximilian J. ;
Nano, Nejva ;
Adolf, Rafael ;
Will, Albrecht ;
Hendrich, Eva ;
Martinoff, Stefan A. ;
Hadamitzky, Martin .
RADIOLOGY-CARDIOTHORACIC IMAGING, 2023, 5 (02)
[28]   Prognostic value of coronary artery disease-reporting and data system (CAD-RADS) score for cardiovascular events in ischemic stroke [J].
Nam, Kyungsun ;
Hur, Jin ;
Han, Kyunghwa ;
Im, Dong Jin ;
Suh, Young Joo ;
Hong, Yoo Jin ;
Lee, Hye-Jeong ;
Kim, Young Jin ;
Choi, Byoung Wook .
ATHEROSCLEROSIS, 2019, 287 :1-7
[29]   Differences in coronary artery disease by CT angiography between patients developing unstable angina pectoris vs. major adverse cardiac events [J].
Schlett, Christopher L. ;
Nance, John W., Jr. ;
Schoepf, U. Joseph ;
O'Brien, Terrence X. ;
Ebersberger, Ullrich ;
Headden, Gary F. ;
Hoffmann, Udo ;
Bamberg, Fabian .
EUROPEAN JOURNAL OF RADIOLOGY, 2014, 83 (07) :1113-1119
[30]   Comparison of machine learning-based CT fractional flow reserve with cardiac MR perfusion mapping for ischemia diagnosis in stable coronary artery disease [J].
Guo, Weifeng ;
Zhao, Shihai ;
Xu, Haijia ;
He, Wei ;
Yin, Lekang ;
Yao, Zhifeng ;
Xu, Zhihan ;
Jin, Hang ;
Wu, Dong ;
Li, Chenguang ;
Yang, Shan ;
Zeng, Mengsu .
EUROPEAN RADIOLOGY, 2024, 34 (9) :5654-5665