A Machine Learning Model Using Cardiac CT and MRI Data Predicts Cardiovascular Events in Obstructive Coronary Artery Disease

被引:0
|
作者
Pezel, Theo [1 ,2 ,3 ,4 ,5 ,6 ]
Toupin, Solenn [2 ,7 ]
Bousson, Valerie [4 ]
Hamzi, Kenza [1 ,2 ,3 ]
Hovasse, Thomas [5 ,6 ]
Lefevre, Thierry [6 ]
Chevalier, Bernard [6 ]
Unterseeh, Thierry [6 ]
Sanguineti, Francesca [5 ,6 ]
Champagne, Stephane [5 ,6 ]
Benamer, Hakim [6 ]
Neylon, Antoinette [6 ]
Akodad, Mariama [6 ]
Ah-Sing, Tania [3 ]
Hamzi, Lounis [4 ]
Goncalves, Trecy [1 ,2 ,3 ,4 ]
Lequipar, Antoine [1 ,2 ,3 ]
Gall, Emmanuel [1 ,2 ,3 ]
Unger, Alexandre [1 ,2 ,3 ,8 ]
Dillinger, Jean Guillaume [1 ,2 ,3 ]
Henry, Patrick [1 ,2 ,3 ]
Vignaux, Olivier [9 ]
Sirol, Marc [9 ]
Garot, Philippe [5 ,6 ]
Garot, Jerome [5 ,6 ]
机构
[1] Univ Paris Cite, Univ Hosp Lariboisiere, AP HP, Dept Cardiol, Paris, France
[2] Univ Paris Cite, Univ Hosp Lariboisiere, AP HP, MIRACLai Multimodal Imaging Res & Anal Core Lab, Paris, France
[3] Univ Paris Cite, Univ Hosp Lariboisiere, AP HP, Inserm,MASCOT,UMRS 942, Paris, France
[4] Univ Paris Cite, Univ Hosp Lariboisiere, AP HP, Dept Radiol, Paris, France
[5] Hop Prive Jacques CARTIER, Inst Cardiovasc Paris Sud, Cardiovasc Magnet Resonance Lab, Ramsay St, 6 Ave Noyer Lambert, F-91300 Massy, France
[6] Hop Prive Jacques Cartier, Inst Cardiovasc Paris Sud, Cardiac Computed Tomog Lab, Ramsay St, 6 Ave Noyer Lambert, F-91300 Massy, France
[7] Siemens Healthcare France, Sci Partnerships, St Denis, France
[8] Hop Univ Bruxelles, Hop Erasme, Dept Cardiol, Brussels, Belgium
[9] Amer Hosp Paris, Dept Cardiovasc Imaging, Neuilly, France
关键词
COMPUTED TOMOGRAPHIC ANGIOGRAPHY; AMERICAN-HEART-ASSOCIATION; APPROPRIATE USE CRITERIA; MAGNETIC-RESONANCE; PROGNOSTIC VALUE; TASK-FORCE; NUCLEAR CARDIOLOGY; END-POINTS; SOCIETY; RISK;
D O I
10.1148/radiol.233030
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Multimodality imaging is essential for personalized prognostic stratification in suspected coronary artery disease (CAD). Machine learning (ML) methods can help address this complexity by incorporating a broader spectrum of variables. Purpose: To investigate the performance of an ML model that uses both stress cardiac MRI and coronary CT angiography (CCTA) data to predict major adverse cardiovascular events (MACE) in patients with newly diagnosed CAD. Materials and Methods: This retrospective study included consecutive symptomatic patients without known CAD referred for CCTA between December 2008 and January 2020. Patients with obstructive CAD (at least one >= 50% stenosis at CCTA) underwent stress cardiac MRI for functional assessment. Eighteen clinical, two electrocardiogram, nine CCTA, and 12 cardiac MRI parameters were evaluated as inputs for the ML model, which involved automated feature selection with the least absolute shrinkage and selection operator algorithm and model building with an XGBoost algorithm. The primary outcome was MACE, defined as a composite of cardiovascular death and nonfatal myocardial infarction. External testing was performed using two independent datasets. Performance was compared between the ML model and existing scores and other approaches using the area under the receiver operating characteristic curve (AUC). Results: Of 2210 patients who completed cardiac MRI, 2038 (mean age, 70 years +/- 12 [SD]; 1091 [53.5%] female participants) completed follow-up (median duration, 7 years [IQR, 6-9 years]); 281 experienced MACE (13.8%). The ML model exhibited a higher AUC (0.86) for MACE prediction than the European Society of Cardiology score (0.55), QRISK3 score (0.60), Framingham Risk Score (0.50), segment involvement score (0.71), CCTA data alone (0.76), or stress cardiac MRI data alone (0.83) (P value range, <.001 to .004). The ML model also exhibited good performance in the two external validation datasets (AUC, 0.84 and 0.92). Conclusion: An ML model including both CCTA and stress cardiac MRI data demonstrated better performance in predicting MACE than traditional methods and existing scores in patients with newly diagnosed CAD. (c) RSNA, 2025
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Machine Learning for Assessment of Coronary Artery Disease in Cardiac CT: A Survey
    Hampe, Nils
    Wolterink, Jelmer M.
    van Velzen, Sanne G. M.
    Leiner, Tim
    Isgum, Ivana
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2019, 6
  • [2] Absence of Coronary Calcification in Patients at Low Risk for Future Cardiovascular Events Robustly Predicts Absence of Obstructive Coronary Artery Disease by Coronary CT Angiography
    Rana, Jamal
    Nakanishi, Rine
    Gransar, Heidi
    Cheng, Victor
    Hayes, Sean
    Thomson, Louise
    Friedman, John
    Shaw, Leslee J.
    Min, James K.
    Berman, Daniel S.
    CIRCULATION, 2011, 124 (21)
  • [3] Anemia predicts cardiovascular events in patients with coronary artery disease
    Asselbergs, FW
    Van der Meer, P
    Tio, RA
    Lipsic, E
    Van Veldhuisen, DJ
    Van Gilst, WH
    Zijlstra, F
    EUROPEAN HEART JOURNAL, 2004, 25 : 498 - 499
  • [4] Coronary Inflammation and Cardiovascular Events in Patients Without Obstructive Coronary Artery Disease
    Diau, Jia Ling
    Lange, Richard A.
    CURRENT CARDIOLOGY REPORTS, 2025, 27 (01)
  • [5] Machine learning based model to diagnose obstructive coronary artery disease using calcium scoring, PET imaging, and clinical data
    van Dalen, J. A.
    Koenders, S. S.
    Metselaar, R. J.
    Vendel, B. N.
    Slotman, D. J.
    Mouden, M.
    Slump, C. H.
    van Dijk, J. D.
    JOURNAL OF NUCLEAR CARDIOLOGY, 2023, 30 (04) : 1504 - 1513
  • [6] Machine learning based model to diagnose obstructive coronary artery disease using calcium scoring, PET imaging, and clinical data
    J. A. van Dalen
    S. S. Koenders
    R. J. Metselaar
    B. N. Vendel
    D. J. Slotman
    M. Mouden
    C. H. Slump
    J. D. van Dijk
    Journal of Nuclear Cardiology, 2023, 30 : 1504 - 1513
  • [7] Carotid intraplaque neovascularization predicts coronary artery disease and cardiovascular events
    Mantella, Laura E.
    Colledanchise, Kayla N.
    Hetu, Marie-France
    Feinstein, Steven B.
    Abunassar, Joseph
    Johri, Amer M.
    EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2019, 20 (11) : 1239 - 1247
  • [8] Scoring of Coronary Artery Disease Characteristics on Coronary CT Angiograms by Using Machine Learning
    Johnson, Kevin M.
    Johnson, Hilary E.
    Zhao, Yang
    Dowe, David A.
    Staib, Lawrence H.
    RADIOLOGY, 2019, 292 (02) : 354 - 362
  • [9] Machine learning to diagnose obstructive coronary artery disease using calcium scoring, PET imaging and clinical data
    Koenders, S.
    Van Dalen, J. A.
    Metselaar, R. J.
    Vendel, B.
    Slotman, D. J.
    Mouden, M.
    Slump, C. H.
    Van Dijk, J. D.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (SUPPL 1) : S243 - S243
  • [10] Cardiac CT: a new method to detect obstructive coronary artery disease
    Duarte Passos, Rodrigo Bastos
    Nomura, Cesar Higa
    de Gusmao Funari, Marcelo Buarque
    EINSTEIN-SAO PAULO, 2007, 5 (03): : 287 - 287