Applications of Artificial Intelligence in Acute Abdominal Imaging

被引:3
|
作者
Yao, Jason [1 ]
Chu, Linda [2 ]
Patlas, Michael [3 ]
机构
[1] McMaster Univ, Dept Radiol, 1280 Main St West, Hamilton L8N 4A6, ON, Canada
[2] Johns Hopkins Univ, Sch Med, Dept Radiol, Baltimore, MD USA
[3] Univ Toronto, Dept Med Imaging, Toronto, ON, Canada
关键词
artificial intelligence; emergency; abdomen; trauma; computed tomography; ultrasound; radiography; radiology; EMERGENCY-DEPARTMENT; COMPUTED-TOMOGRAPHY; CT; PREDICTION; DIAGNOSIS;
D O I
10.1177/08465371241250197
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) is a rapidly growing field with significant implications for radiology. Acute abdominal pain is a common clinical presentation that can range from benign conditions to life-threatening emergencies. The critical nature of these situations renders emergent abdominal imaging an ideal candidate for AI applications. CT, radiographs, and ultrasound are the most common modalities for imaging evaluation of these patients. For each modality, numerous studies have assessed the performance of AI models for detecting common pathologies, such as appendicitis, bowel obstruction, and cholecystitis. The capabilities of these models range from simple classification to detailed severity assessment. This narrative review explores the evolution, trends, and challenges in AI applications for evaluating acute abdominal pathologies. We review implementations of AI for non-traumatic and traumatic abdominal pathologies, with discussion of potential clinical impact, challenges, and future directions for the technology. Visual Abstract This is a visual representation of the abstract. L'intelligence artificielle (IA) est un domaine en plein essor qui a des implications importantes en radiologie. La douleur abdominale aiguë est une pré sentation clinique courante qui peut prendre de nombreuses formes, de l'affection bé nigne à la situation d'urgence mettant en jeu le pronostic vital. En raison de la nature critique de ces situations, l'imagerie de l'abdomen, un domaine en pleine é mergence, est une candidate idé ale pour la mise en pratique de l'IA. Dans le cadre de l'é valuation des patients souffrant de douleur abdominale aiguë, la TDM, la radiographie et l'é chographie sont les modalité s d'imagerie les plus courantes. Chacune de ces modalité s a fait l'objet de nombreuses é tudes visant à é valuer les performances des modè les d'IA dans le cadre de la dé tection d'affections courantes, telles que l'appendicite, l'occlusion intestinale et la cholé cystite. Les capacité s de ces modè les vont de la simple classification de l'affection à l'é valuation dé taillé e de la gravité de celle-ci. La pré sente revue narrative explore l'é volution, les tendances et les enjeux du recours à l'IA dans le cadre de l'é valuation des affections abdominales aiguë s. Nous passons en revue la mise en oe uvre d'outils d'IA lors de l'é valuation d'affections abdominales traumatiques et non traumatiques, et discutons des ré percussions cliniques potentielles, des enjeux et des orientations futures de cette technologie.
引用
收藏
页码:761 / 770
页数:10
相关论文
共 50 条
  • [41] Proposed Protocols for Artificial Intelligence Imaging Database in Acute Stroke Imaging
    Kim, Minjae
    Jung, Seung Chai
    Kim, Soo Chin
    Kim, Bum Joon
    Seo, Woo-Keun
    Kim, Byungjun
    NEUROINTERVENTION, 2023, 18 (03) : 149 - 158
  • [42] Applications of Artificial Intelligence in Optical Coherence Tomography Angiography Imaging
    Schottenhamml, Julia
    Hohberger, Bettina
    Mardin, Christian Yahya
    KLINISCHE MONATSBLATTER FUR AUGENHEILKUNDE, 2022, 239 (12) : 1412 - 1426
  • [43] Is There Value for Artificial Intelligence Applications in Molecular Imaging and Nuclear Medicine?
    Porenta, Gerold
    JOURNAL OF NUCLEAR MEDICINE, 2019, 60 (10) : 1347 - 1349
  • [44] Artificial Intelligence in IR Thermal Imaging and Sensing for Medical Applications
    Nowakowski, Antoni Z.
    Kaczmarek, Mariusz
    SENSORS, 2025, 25 (03)
  • [45] Artificial intelligence: a critical review of current applications in pancreatic imaging
    Maxime Barat
    Guillaume Chassagnon
    Anthony Dohan
    Sébastien Gaujoux
    Romain Coriat
    Christine Hoeffel
    Christophe Cassinotto
    Philippe Soyer
    Japanese Journal of Radiology, 2021, 39 : 514 - 523
  • [46] Emerging artificial intelligence applications in liver magnetic resonance imaging
    Hill, Charles E.
    Biasiolli, Luca
    Robson, Matthew D.
    Grau, Vicente
    Pavlides, Michael
    WORLD JOURNAL OF GASTROENTEROLOGY, 2021, 27 (40) : 6825 - 6843
  • [47] Applications of artificial intelligence and deep learning in molecular imaging and radiotherapy
    Arabi, Hossein
    Zaidi, Habib
    EUROPEAN JOURNAL OF HYBRID IMAGING, 2020, 4 (01):
  • [48] Applications of Artificial Intelligence in Musculoskeletal Imaging: From the Request to the Report
    Gorelik, Natalia
    Gyftopoulos, Soterios
    CANADIAN ASSOCIATION OF RADIOLOGISTS JOURNAL-JOURNAL DE L ASSOCIATION CANADIENNE DES RADIOLOGISTES, 2021, 72 (01): : 45 - 59
  • [49] Artificial Intelligence for Cardiothoracic Imaging: Overview of Current and Emerging Applications
    Hochhegger, Bruno
    Pasini, Romulo
    Carvalho, Alysson Roncally
    Rodrigues, Rosana
    Altmayer, Stephan
    Bittencourt, Leonardo Kayat
    Marchiori, Edson
    Forghani, Reza
    SEMINARS IN ROENTGENOLOGY, 2023, 58 (02) : 184 - 195
  • [50] A Review of Artificial Intelligence in Cerebrovascular Disease Imaging: Applications and Challenges
    Chen, Xi
    Lei, Yu
    Su, Jiabin
    Yang, Heng
    Ni, Wei
    Yu, Jinhua
    Gu, Yuxiang
    Mao, Ying
    CURRENT NEUROPHARMACOLOGY, 2022, 20 (07) : 1359 - 1382