Robust, fast and accurate mapping of diffusional mean kurtosis

被引:0
作者
Farquhar, Megan E. [1 ]
Yang, Qianqian [1 ,2 ,3 ]
Vegh, Viktor [4 ,5 ]
机构
[1] Queensland Univ Technol, Fac Sci, Sch Math Sci, Brisbane, Australia
[2] Queensland Univ Technol, Ctr Data Sci, Brisbane, Australia
[3] Queensland Univ Technol, Ctr Biomed Technol, Brisbane, Australia
[4] Univ Queensland, Ctr Adv Imaging, Brisbane, Australia
[5] ARC Training Ctr Innovat Biomed Imaging Technol, Brisbane, Australia
来源
ELIFE | 2024年 / 12卷
基金
澳大利亚研究理事会;
关键词
mean diffusional kurtosis; sub-diffusion model; non-Gaussian diffusion; diffusion MRI; multiple diffusion times; high b-values; MAGNETIC-RESONANCE; TENSOR; MODELS; MRI; VOLUME; BRAIN;
D O I
10.7554/eLife.90465
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Diffusional kurtosis imaging (DKI) is a methodology for measuring the extent of non-Gaussian diffusion in biological tissue, which has shown great promise in clinical diagnosis, treatment planning, and monitoring of many neurological diseases and disorders. However, robust, fast, and accurate estimation of kurtosis from clinically feasible data acquisitions remains a challenge. In this study, we first outline a new accurate approach of estimating mean kurtosis via the sub-diffusion mathematical framework. Crucially, this extension of the conventional DKI overcomes the limitation on the maximum b-value of the latter. Kurtosis and diffusivity can now be simply computed as functions of the sub-diffusion model parameters. Second, we propose a new fast and robust fitting procedure to estimate the sub-diffusion model parameters using two diffusion times without increasing acquisition time as for the conventional DKI. Third, our sub-diffusion-based kurtosis mapping method is evaluated using both simulations and the Connectome 1.0 human brain data. Exquisite tissue contrast is achieved even when the diffusion encoded data is collected in only minutes. In summary, our findings suggest robust, fast, and accurate estimation of mean kurtosis can be realised within a clinically feasible diffusion-weighted magnetic resonance imaging data acquisition time.
引用
收藏
页数:29
相关论文
共 59 条
  • [41] The random walk's guide to anomalous diffusion: a fractional dynamics approach
    Metzler, R
    Klafter, J
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01): : 1 - 77
  • [42] Diffusion time dependence, power-law scaling, and exchange in gray matter
    Olesen, Jonas L.
    Ostergaard, Leif
    Shemesh, Noam
    Jespersen, Sune N.
    [J]. NEUROIMAGE, 2022, 251
  • [43] Signal-to-Noise Ratio and MR Tissue Parameters in Human Brain Imaging at 3, 7, and 9.4 Tesla Using Current Receive Coil Arrays
    Pohmann, Rolf
    Speck, Oliver
    Scheffler, Klaus
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2016, 75 (02) : 801 - 809
  • [44] Optimal Experimental Design for Diffusion Kurtosis Imaging
    Poot, Dirk H. J.
    den Dekker, Arnold J.
    Achten, Eric
    Verhoye, Marleen
    Sijbers, Jan
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (03) : 819 - 829
  • [45] The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing
    Shafto, Meredith A.
    Tyler, Lorraine K.
    Dixon, Marie
    Taylor, Jason R.
    Rowe, James B.
    Cusack, Rhodri
    Calder, Andrew J.
    Marslen-Wilson, William D.
    Duncan, John
    Dalgleish, Tim
    Henson, Richard N.
    Brayne, Carol
    Matthews, Fiona E.
    [J]. BMC NEUROLOGY, 2014, 14
  • [46] Optimization of quasi-diffusion magnetic resonance imaging for quantitative accuracy and time-efficient acquisition
    Spilling, Catherine A.
    Howe, Franklyn A.
    Barrick, Thomas R.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2022, 88 (06) : 2532 - 2547
  • [47] Estimation of Tensors and Tensor-Derived Measures in Diffusional Kurtosis Imaging
    Tabesh, Ali
    Jensen, Jens H.
    Ardekani, Babak A.
    Helpern, Joseph A.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2011, 65 (03) : 823 - 836
  • [48] Comprehensive diffusion MRI dataset for in vivo human brain microstructure mapping using 300 mT/m gradients
    Tian, Qiyuan
    Fan, Qiuyun
    Witzel, Thomas
    Polackal, Maya N.
    Ohringer, Ned A.
    Ngamsombat, Chanon
    Russo, Andrew W.
    Machado, Natalya
    Brewer, Kristina
    Wang, Fuyixue
    Setsompop, Kawin
    Polimeni, Jonathan R.
    Keil, Boris
    Wald, Lawrence L.
    Rosen, Bruce R.
    Klawiter, Eric C.
    Nummenmaa, Aapo
    Huang, Susie Y.
    [J]. SCIENTIFIC DATA, 2022, 9 (01)
  • [49] Diffusion MRI in the brain - Theory and concepts
    Tournier, J-Donald
    [J]. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY, 2019, 112 : 1 - 16
  • [50] The WU-Minn Human Connectome Project: An overview
    Van Essen, David C.
    Smith, Stephen M.
    Barch, Deanna M.
    Behrens, Timothy E. J.
    Yacoub, Essa
    Ugurbil, Kamil
    [J]. NEUROIMAGE, 2013, 80 : 62 - 79