Computation of First Passage of Markov Additive Processes

被引:0
作者
Liu, Changli [1 ]
Xue, Jungong [2 ]
Zhang, Junxin [2 ]
机构
[1] Sichuan Univ, Coll Math, Chengdu 610065, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
基金
美国国家科学基金会; 国家重点研发计划;
关键词
Markov additive process; Integral matrix equations; M-matrix algebraic Riccati equations; Structure-preserving doubling algorithms; ALGEBRAIC RICCATI-EQUATIONS; WIENER-HOPF FACTORIZATION; DOUBLING-ALGORITHM; AMERICAN;
D O I
10.1007/s10915-025-02892-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The computation of the pair of matrices describing the first passage time of a Markov additive process is considered. This pair of matrices is characterized as a solution to an integral matrix equation for which we develop an iterative method. At each step, it requires computing the extremal solution to a mixed linear-quadratic matrix equation, which is accomplished by a quadratically convergent algorithm. When all the jumps are of phase-type distribution, the integral matrix equation can be transformed into a single mixed linear-quadratic matrix equation and thus the pair of matrices can be computed with quadratic convergence.
引用
收藏
页数:29
相关论文
共 31 条
[1]   A quadratically convergent algorithm for first passage time distributions in the Markov-modulated Brownian motion [J].
Ahn, Soohan ;
Ramaswami, V. .
STOCHASTIC MODELS, 2017, 33 (01) :59-96
[2]   Russian and American put options under exponential phase-type Levy models [J].
Asmussen, S ;
Avram, F ;
Pistorius, MR .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 109 (01) :79-111
[3]  
Asmussen S., 1995, STOCH MODELS, V11, P21, DOI DOI 10.1080/15326349508807330
[4]  
Berman A., 1994, Nonnegative Matrices in the Mathematical Sciences, DOI [10.1137/1.9781611971262, DOI 10.1137/1.9781611971262]
[5]   NUMERICAL SOLUTION OF A MATRIX INTEGRAL EQUATION ARISING IN MARKOV-MODULATED LEVY PROCESSES [J].
Bini, Dario ;
Latouche, Guy ;
Meini, Beatrice .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (04) :A2669-A2690
[6]   A family of fast fixed point iterations for M/G/1-type Markov chains [J].
Bini, Dario A. ;
Latouche, Guy ;
Meini, Beatrice .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (02) :1454-1477
[7]   Transforming algebraic Riccati equations into unilateral quadratic matrix equations [J].
Bini, Dario A. ;
Meini, Beatrice ;
Poloni, Federico .
NUMERISCHE MATHEMATIK, 2010, 116 (04) :553-578
[8]   FIRST PASSAGE TIMES FOR MARKOV ADDITIVE PROCESSES WITH POSITIVE JUMPS OF PHASE TYPE [J].
Breuer, Lothar .
JOURNAL OF APPLIED PROBABILITY, 2008, 45 (03) :779-799
[9]  
Brualdi R. A., 1991, Combinatorial Matrix Theory, DOI [10.1017/CBO9781107325708, DOI 10.1017/CBO9781107325708]
[10]  
CINLAR E, 1972, Z WAHRSCHEINLICHKEIT, V24, P85, DOI 10.1007/BF00532536