Connections between Laguerre polynomials through a third-order differential operator transformation

被引:0
作者
Chammam, Wathek [1 ,2 ,3 ]
Aloui, Baghdadi [4 ]
Souissi, Jihad [5 ]
机构
[1] Majmaah Univ, Coll Sci Zulfi, Dept Math, Al Majmaah 11952, Saudi Arabia
[2] Gabes Univ, Res Lab Math & Applicat LR17ES11, Gabes 6072, Tunisia
[3] Univ Carthage, Natl Inst Appl Sci & Technol, Carthage, Tunisia
[4] Sfax Univ, Fac Sci Sfax, Dept Math, Sfax, Tunisia
[5] Gabes Univ, Fac Sci Gabes, Dept Math, Gabes, Tunisia
来源
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS | 2025年 / 39卷 / 02期
关键词
Laguerre polynomials; differential operators; lowering-raising-shift operators; eigenfunctions; CLASSICAL ORTHOGONAL POLYNOMIALS; RULES;
D O I
10.22436/jmcs.039.02.08
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {l((alpha)) (n) }n >= 0, (alpha not equal -m, m > 1), be the monic orthogonal sequence of Laguerre polynomials. We define a new differential operator, L alpha+, that raises the degree and also the parameter of nl(alpha) (x). More precisely, L-alpha+ ((alpha))(nl) (x) = l((alpha+1)) (n+1) (x),n > 0. As an illustration, we give some properties related to this operator and some other operators in the literature.
引用
收藏
页码:292 / 299
页数:8
相关论文
共 32 条
  • [1] ADAMEK J, 1988, LECT NOTES MATH, V1348, P1
  • [2] Al-Salam W., 1972, SIAM J. Math. Anal., V3, P2
  • [3] Al-Salam W. A., 1990, Characterization theorems for orthogonal polynomials, P2
  • [4] Classical Orthogonal Polynomials and Some New Properties for Their Centroids of Zeroes
    Aloui, B.
    Chammam, W.
    [J]. ANALYSIS MATHEMATICA, 2020, 46 (01) : 13 - 23
  • [5] CONNECTION FORMULAS AND REPRESENTATIONS OF LAGUERRE POLYNOMIALS IN TERMS OF THE ACTION OF LINEAR DIFFERENTIAL OPERATORS
    Aloui, B.
    Kheriji, L.
    [J]. PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2019, 8 (03): : 24 - 37
  • [6] Aloui B., 2018, Electron. J. Math. Anal. Appl., V6, P157
  • [7] CLASSICAL ORTHOGONAL POLYNOMIALS VIA A SECOND-ORDER LINEAR DIFFERENTIAL OPERATORS
    Aloui, Baghdadi
    Chammam, Wathek
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (02) : 689 - 703
  • [8] The centroid of the zeroes of a polynomial via certain Laguerre-type operators
    Aloui, Baghdadi
    Chammam, Wathek
    Alhussain, Ziyad A.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (05) : 2656 - 2664
  • [9] Chebyshev polynomials of the second kind via raising operator preserving the orthogonality
    Aloui, Baghdadi
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2018, 76 (01) : 126 - 132
  • [10] Characterization of Laguerre polynomials as orthogonal polynomials connected by the Laguerre degree raising shift operator
    Aloui, Baghdadi
    [J]. RAMANUJAN JOURNAL, 2018, 45 (02) : 475 - 481