GLADA: Global and Local Associative Domain Adaptation for EEG-Based Emotion Recognition

被引:0
|
作者
Pan, Tianxu [1 ,2 ]
Su, Nuo [2 ,3 ]
Shan, Jun [2 ,3 ]
Tang, Yang [1 ,2 ]
Zhong, Guoqiang [3 ]
Jiang, Tianzi [1 ,2 ]
Zuo, Nianming [1 ,2 ]
机构
[1] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Brainnetome Ctr, Lab BABII, Beijing 100190, Peoples R China
[3] Ocean Univ China, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金;
关键词
Electroencephalography; Emotion recognition; Feature extraction; Brain modeling; Adaptation models; Transfer learning; Data models; Deep learning; domain adaptation; electroencephalography (EEG); emotion recognition; subject-independent;
D O I
10.1109/TCDS.2024.3432752
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Emotion recognition based on electroencephalography (EEG) has significant advantages in terms of reliability and accuracy. However, individual differences in EEG limit the ability of sentiment classifiers to generalize across subjects. Furthermore, due to the nonstationarity of EEG, subject signals can vary with time, an important challenge for temporal emotion recognition. Several emotion recognition methods have been developed that consider the alignment of conditional distributions, but do not balance the weights of conditional and marginal distributions. In this article, we propose a novel approach to generalize emotion recognition models across individuals and time, i.e., global and local associative domain adaptation (GLADA). The proposed method consists of three parts: 1) deep neural networks are used to extract deep features from emotional EEG data; 2) considering that marginal and conditional distributions between domains can contribute to adaptation differently, a method that combines coarse-grained adversarial adaptation and fine-grained adversarial adaptation is used to narrow the domain distance of the joint distribution in the EEG data between subjects (i.e., reduce intersubject variability), and the weights of the marginal and conditional distributions are automatically balanced using dynamic balancing factors; and 3) domain adaptation is used to accelerate model convergence. Using GLADA, subject-independent EEG emotion recognition is improved by reducing the influence of the subject's personal information on EEG emotion. Experimental results demonstrate that the GLADA model effectively addresses the domain transfer problem, resulting in improved performance across multiple EEG emotion recognition tasks.
引用
收藏
页码:167 / 178
页数:12
相关论文
共 50 条
  • [1] Domain Adaptation for EEG Emotion Recognition Based on Latent Representation Similarity
    Li, Jinpeng
    Qiu, Shuang
    Du, Changde
    Wang, Yixin
    He, Huiguang
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2020, 12 (02) : 344 - 353
  • [2] Adversarial Domain Adaptation-Based EEG Emotion Transfer Recognition
    Li, Ting
    Wang, Zhan
    Liu, Huijing
    IEEE ACCESS, 2025, 13 : 32706 - 32723
  • [3] WGAN Domain Adaptation for EEG-Based Emotion Recognition
    Luo, Yun
    Zhang, Si-Yang
    Zheng, Wei-Long
    Lu, Bao-Liang
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT V, 2018, 11305 : 275 - 286
  • [4] Domain-Invariant Adaptive Graph Regularized Label Propagation for EEG-Based Emotion Recognition
    Tao, Jianwen
    Yan, Liangda
    He, Tao
    IEEE ACCESS, 2024, 12 : 126774 - 126792
  • [5] EEG-based Emotion Recognition Using Domain Adaptation Network
    Jin, Yi-Ming
    Luo, Yu-Dong
    Zheng, Wei-Long
    Lu, Bao-Liang
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON ORANGE TECHNOLOGIES (ICOT), 2017, : 222 - 225
  • [6] A Domain Generative Graph Network for EEG-Based Emotion Recognition
    Gu, Yun
    Zhong, Xinyue
    Qu, Cheng
    Liu, Chuanjun
    Chen, Bin
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (05) : 2377 - 2386
  • [7] Domain Adaptation Techniques for EEG-Based Emotion Recognition: A Comparative Study on Two Public Datasets
    Lan, Zirui
    Sourina, Olga
    Wang, Lipo
    Scherer, Reinhold
    Mueller-Putz, Gernot R.
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2019, 11 (01) : 85 - 94
  • [8] EEGMatch: Learning With Incomplete Labels for Semisupervised EEG-Based Cross-Subject Emotion Recognition
    Zhou, Rushuang
    Ye, Weishan
    Zhang, Zhiguo
    Luo, Yanyang
    Zhang, Li
    Li, Linling
    Huang, Gan
    Dong, Yining
    Zhang, Yuan-Ting
    Liang, Zhen
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [9] Evolutionary Ensemble Learning for EEG-Based Cross-Subject Emotion Recognition
    Zhang, Hanzhong
    Zuo, Tienyu
    Chen, Zhiyang
    Wang, Xin
    Sun, Poly Z. H.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (07) : 3872 - 3881
  • [10] TMLP plus SRDANN: A domain adaptation method for EEG-based emotion recognition
    Li, Wei
    Hou, Bowen
    Li, Xiaoyu
    Qiu, Ziming
    Peng, Bo
    Tian, Ye
    MEASUREMENT, 2023, 207