High Production of Nitrous Oxide (N2O) via Acidic Denitrification

被引:0
|
作者
Zuo, Zhiqiang [1 ,2 ,3 ]
Zhang, Tianyi [3 ,4 ]
Cen, Xiaotong [1 ,3 ]
Lu, Xi [3 ]
Liu, Tao [3 ,5 ]
Zheng, Min [1 ,3 ]
机构
[1] Univ New South Wales, Water Res Ctr, Sch Civil & Environm Engn, Sydney, NSW 2052, Australia
[2] Kings Coll London, Dept Engn, London WC2R 2LS, England
[3] Univ Queensland, Australian Ctr Water & Environm Biotechnol, St Lucia, Qld 4072, Australia
[4] Tohoku Univ, Grad Sch Engn, Dept Civil & Environm Engn, Sendai, Miyagi 9808579, Japan
[5] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong 999077, Peoples R China
来源
基金
澳大利亚研究理事会;
关键词
acidic denitrification; nitrite; nitrous oxide; nitrogen recovery; microbial culture; WASTE-WATER TREATMENT; REMOVAL; ENERGY; REDUCTION; EMISSIONS; NITRITE;
D O I
10.1021/acs.estlett.5c00255
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Nitrous oxide (N2O) recovery in wastewater management offers a promising dual benefit of resource recovery and greenhouse gas reduction. This study demonstrates significant N2O production via microbial denitrification under acidic conditions. Using a bioreactor maintained at pH 5, continuously fed with nitrite and acetate, an acidic microbial culture was cultivated with Rhodanobacter emerging as the dominant denitrifying genus. The culture achieved a nitrite-to-N2O conversion efficiency exceeding 60%, with a production rate of 6.0 +/- 0.2 mg of N2O-N h-1 (g volatile suspended solids)-1. Stable acidic denitrification was sustained in semicontinuous operation, with liquid N2O concentrations accumulating up to 150 mg of N/L. This discovery introduces a novel pathway for N2O production and recovery, offering new possibilities for wastewater nitrogen management.
引用
收藏
页码:425 / 431
页数:7
相关论文
共 50 条
  • [31] RECONSIDERATION OF THE MECHANISMS OF NITROUS-OXIDE (N2O) TERATOGENICITY
    FUJINAGA, M
    MAZZE, RI
    BADEN, JM
    TERATOLOGY, 1988, 38 (02) : A18 - A18
  • [32] Increasing abuse and addiction to nitrous oxide (N2O): still a legal high in Denmark
    Hoegberg, Lotte C. G.
    Palmqvist, Dorte F.
    Bogevig, Soren
    CLINICAL TOXICOLOGY, 2020, 58 (06) : 596 - 596
  • [33] Model predictive control of partial nitrification via nitrous oxide (N2O) emission monitoring
    Wu, Jun
    Xu, Ting
    Yan, Gang
    He, Chengda
    Zhou, Guojing
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2015, 3 (04): : 2857 - 2865
  • [34] New insight on the regulation of N2O production in aerobic condition: An N2O metabolic perspective based on enzymatic analysis of nitrous oxide reductase
    Yang, Rui
    Yuan, Lin-jiang
    Wang, Ru
    He, Zhi-xian
    Chen, Xi
    JOURNAL OF WATER PROCESS ENGINEERING, 2021, 41
  • [35] Effects of copper on nitrous oxide (N2O) reduction in denitrifiers and N2O emissions from agricultural soils
    Weishou Shen
    Huaiwen Xue
    Nan Gao
    Yutaka Shiratori
    Takehiro Kamiya
    Toru Fujiwara
    Kazuo Isobe
    Keishi Senoo
    Biology and Fertility of Soils, 2020, 56 : 39 - 51
  • [36] Emissions of nitrous acid (HONO), nitric oxide (NO), and nitrous oxide (N2O) from horse dung
    Maljanen, Marja
    Gondal, Zafar
    Bhattarai, Hem Raj
    AGRICULTURAL AND FOOD SCIENCE, 2016, 25 (04) : 225 - 229
  • [37] Effects of copper on nitrous oxide (N2O) reduction in denitrifiers and N2O emissions from agricultural soils
    Shen, Weishou
    Xue, Huaiwen
    Gao, Nan
    Shiratori, Yutaka
    Kamiya, Takehiro
    Fujiwara, Toru
    Isobe, Kazuo
    Senoo, Keishi
    BIOLOGY AND FERTILITY OF SOILS, 2020, 56 (01) : 39 - 51
  • [38] Denitrification and nitrous oxide production in a stream
    Nakajima, Takuo
    Ochiai, Masahiro
    Anbutsu, Kaorl
    Mitamura, Osamu
    INTERNATIONAL ASSOCIATION OF THEORETICAL AND APPLIED LIMNOLOGY, VOL 29, PT 3, PROCEEDINGS, 2006, 29 : 1461 - 1466
  • [39] Generalized model for N-2 and N2O production from nitrification and denitrification
    Parton, WJ
    Mosier, AR
    Ojima, DS
    Valentine, DW
    Schimel, DS
    Weier, K
    Kulmala, AE
    GLOBAL BIOGEOCHEMICAL CYCLES, 1996, 10 (03) : 401 - 412
  • [40] Abiotic Nitrous Oxide (N2O) Production Is Strongly pH Dependent, but Contributes Little to Overall N2O Emissions in Biological Nitrogen Removal Systems
    Su, Qingxian
    Domingo-Felez, Carlos
    Jensen, Marlene Mark
    Smets, Barth F.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2019, 53 (07) : 3508 - 3516