Motif-aware curriculum learning for node classification

被引:0
作者
Cai, Xiaosha [1 ]
Chen, Man-Sheng [2 ]
Wang, Chang-Dong [2 ,3 ]
Zhang, Haizhang [1 ]
机构
[1] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Peoples R China
[2] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China
[3] Guangdong Key Lab Big Data Anal & Proc, Guangzhou 510006, Peoples R China
关键词
Node classification; Curriculum learning; Motif-aware; Subgraph information;
D O I
10.1016/j.neunet.2024.107089
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Node classification, seeking to predict the categories of unlabeled nodes, is a crucial task in graph learning. One of the most popular methods for node classification is currently Graph Neural Networks (GNNs). However, conventional GNNs assign equal importance to all training nodes, which can lead to a reduction inaccuracy and robustness due to the influence of complex nodes information. In light of the potential benefits of curriculum learning, some studies have proposed to incorporate curriculum learning into GNNs , where the node information can be acquired in an orderly manner. Nevertheless, the existing curriculum learning-based node classification methods fail to consider the subgraph structural information. To address this issue, we propose a novel approach, Motif-aware Curriculum Learning for Node Classification (MACL). It emphasizes the role of motif structures within graphs to fully utilize subgraph information and measure the quality of nodes, supporting an organized learning process for GNNs. Specifically, we design a motif-aware difficulty measurer to evaluate the difficulty of training nodes from different perspectives. Furthermore, we have implemented a training scheduler to introduce appropriate training nodes to the GNNs at suitable times. We conduct extensive experiments on five representative datasets. The results show that incorporating MACL into GNNs can improve the accuracy.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] SAGCN: Towards Structure-Aware Deep Graph Convolutional Networks on Node Classification
    He, Ming
    Ding, Tianyu
    Han, Tianshuo
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT II, 2021, 12713 : 67 - 78
  • [22] Nonlinear Graph Learning-Convolutional Networks for Node Classification
    Linjun Chen
    Xingyi Liu
    Zexin Li
    Neural Processing Letters, 2022, 54 : 2727 - 2736
  • [23] Nonlinear Graph Learning-Convolutional Networks for Node Classification
    Chen, Linjun
    Liu, Xingyi
    Li, Zexin
    NEURAL PROCESSING LETTERS, 2022, 54 (04) : 2727 - 2736
  • [24] Label-informed Graph Structure Learning for Node Classification
    Wang, Liping
    Hu, Fenyu
    Wu, Shu
    Wang, Liang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3488 - 3492
  • [25] DAG: Dual Attention Graph Representation Learning for Node Classification
    Lin, Siyi
    Hong, Jie
    Lang, Bo
    Huang, Lin
    MATHEMATICS, 2023, 11 (17)
  • [26] Curriculum learning of visual attribute clusters for multi-task classification
    Sarafianos, Nikolaos
    Giannakopoulos, Theodoros
    Nikou, Christophoros
    Kakadiaris, Ioannis A.
    PATTERN RECOGNITION, 2018, 80 : 94 - 108
  • [27] Motif-Based Hypergraph Convolution Network for Semi-Supervised Node Classification on Heterogeneous Graph
    Wu Y.
    Wang Y.
    Wang X.
    Xu Z.-X.
    Li L.-N.
    Jisuanji Xuebao/Chinese Journal of Computers, 2021, 44 (11): : 2248 - 2260
  • [28] Medical-based Deep Curriculum Learning for Improved Fracture Classification
    Jimenez-Sanchez, Amelia
    Mateus, Diana
    Kirchhoff, Sonja
    Kirchhoff, Chlodwig
    Biberthaler, Peter
    Navab, Nassir
    Gonzalez Ballester, Miguel A.
    Piella, Gemma
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT VI, 2019, 11769 : 694 - 702
  • [29] Graph Attention-Based Curriculum Learning for Mental Healthcare Classification
    Ahmed, Usman
    Lin, Jerry Chun-Wei
    Srivastava, Gautam
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (05) : 2581 - 2591
  • [30] A COMPARATIVE EVALUATION OF CURRICULUM LEARNING WITH FILTERING AND BOOSTING IN SUPERVISED CLASSIFICATION PROBLEMS
    Smith, Michael R.
    Martinez, Tony
    COMPUTATIONAL INTELLIGENCE, 2016, 32 (02) : 167 - 195