Microbial necromass as a critical driver of soil organic carbon accumulation in Qinghai-Tibet Plateau under climate warming: A meta-analysis

被引:0
|
作者
Zhao, Yunduo [1 ,2 ,3 ]
Li, Dongsheng [4 ]
Zhou, Jinxing [1 ,2 ,3 ]
机构
[1] Beijing Forestry Univ, Key Lab State Forestry Adm Soil & Water Conservat, Beijing 100083, Peoples R China
[2] Beijing Forestry Univ, Sch Soil & Water Conservat, Jianshui Res Stn, Beijing 100083, Peoples R China
[3] Beijing Forestry Univ, Engn Res Ctr Forestry Ecol Engn, Minist Educ, Beijing 100083, Peoples R China
[4] Tongji Univ, State Key Lab Marine Geol, Shanghai 200092, Peoples R China
关键词
Warming; Microbial necromass; Carbon cycle and sequestration; meta-analysis; Qinghai-Tibet Plateau; AMINO-SUGARS; FUNGAL; SEQUESTRATION; BACTERIAL; RESIDUES; PLANT;
D O I
10.1016/j.geodrs.2024.e00903
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Microbial necromass plays a significant role in soil carbon storage under climate warming, as it is considered a crucial component of the stable carbon pool in soils. However, how the warming, including various warming patterns, affects microbial necromass and its contribution to the organic carbon pool in alpine regions remains largely unexplored. A meta-analysis was conducted utilizing data from ten publications to assess the effects of warming on microbial necromass on the Qinghai-Tibet Plateau. The findings indicated that the soil organic carbon (SOC) content did not exhibit significant changes after warming; however, microbial necromass carbon (MNC) and its ratio to SOC experienced significantly increases of 17.7 % and 52.0 %, respectively. The effect size of warming on fungal necromass carbon (FNC; +19.5 %) was larger than that of bacterial necromass carbon (BNC; +9.2 %). Furthermore, the warming patterns influenced the accumulation of microbial necromass and its ratio to SOC. The accumulation of microbial necromass and its ratio to SOC were increased (19.8 % and 63.9 %) under the low-magnitude warming and slowed down (14.0 % and 20.3 %) under the high-magnitude warming. The MNC and FNC were increased under both long-term warming (1.61 g/kg and 0.86 g/kg) and short-term warming (0.96 g/kg and 0.50 g/kg), but there was no significant change in BNC under long-term warming patterns. The effect sizes of warming on BNC, FNC and MNC were larger in the subsoil (16.3 %, 25.1 % and 24.2 %) than that in the topsoil (7.8 %, 19.1 % and 17.5 %). These results highlight the importance of warming patterns as predictors of microbial necromass. Nonetheless, these conclusions may be restricted by the insufficient sample size, and future researches should expand the sample size to reveal the threshold and mechanism underlying the effect of warming patterns on microbial necromass.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Reduced contribution of microbial necromass carbon to soil organic carbon following tunnel construction in the eastern Qinghai-Tibet Plateau
    Chen, Yuzhuo
    Xiang, Jincheng
    Wang, Xiaodong
    Xiao, Yang
    Laffitte, Benjamin
    He, Shurui
    Yu, Du
    Chen, Guo
    Li, Lin
    Pei, Xiangjun
    Tang, Xiaolu
    JOURNAL OF CLEANER PRODUCTION, 2024, 434
  • [2] Aridity and NPP constrain contribution of microbial necromass to soil organic carbon in the Qinghai-Tibet alpine grasslands
    Zhang, Xinying
    Jia, Juan
    Chen, Litong
    Chu, Haiyan
    He, Jin-Sheng
    Zhang, Yangjian
    Feng, Xiaojuan
    SOIL BIOLOGY & BIOCHEMISTRY, 2021, 156
  • [3] Microbial necromass response to soil warming: A meta-analysis
    Mitchell, Megan F.
    Maclean, Meghan Graham
    Deangelis, Kristen M.
    FRONTIERS IN SOIL SCIENCE, 2022, 2
  • [4] Responses of Soil Microbial Communities to Experimental Warming in Alpine Grasslands on the Qinghai-Tibet Plateau
    Zhang, Bin
    Chen, Shengyun
    He, Xingyuan
    Liu, Wenjie
    Zhao, Qian
    Zhao, Lin
    Tian, Chunjie
    PLOS ONE, 2014, 9 (08):
  • [5] Topographic Drivers of Permafrost Organic Carbon Accumulation on the Northern Qinghai-Tibet Plateau
    Mu, Mei
    Mu, Cuicui
    Liu, Hebin
    Qiao, Yuan
    Zhu, Yongji
    Jia, Yunjie
    Fan, Chengyan
    Zhang, Guofei
    Peng, Xiaoqing
    PERMAFROST AND PERIGLACIAL PROCESSES, 2024, 35 (03) : 373 - 383
  • [6] How does soil water content influence permafrost evolution on the Qinghai-Tibet Plateau under climate warming?
    Ji, Fang
    Fan, Linfeng
    Kuang, Xingxing
    Li, Xin
    Cao, Bin
    Cheng, Guodong
    Yao, Yingying
    Zheng, Chunmiao
    ENVIRONMENTAL RESEARCH LETTERS, 2022, 17 (06)
  • [7] Soil organic carbon stabilization by iron in permafrost regions of the Qinghai-Tibet Plateau
    Mu, C. C.
    Zhang, T. J.
    Zhao, Q.
    Guo, H.
    Zhong, W.
    Su, H.
    Wu, Q. B.
    GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (19) : 10286 - 10294
  • [8] Spatial variation of soil organic carbon in the Qinghai Lake watershed, northeast Qinghai-Tibet Plateau
    Ma, Yu-Jun
    Xie, Ting
    Li, Xiao-Yan
    CATENA, 2022, 213
  • [9] Effects of Long-Term Warming on Microbial Nutrients Limitation of Soil Aggregates on the Qinghai-Tibet Plateau
    Chen, Wenjing
    Zhou, Huakun
    Qiao, Leilei
    Li, Yuanze
    Wu, Yang
    Zhai, Jiaying
    Liu, Guobin
    Xue, Sha
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2023, 23 (4) : 5133 - 5144
  • [10] Effects of Long-Term Warming on Microbial Nutrients Limitation of Soil Aggregates on the Qinghai-Tibet Plateau
    Wenjing Chen
    Huakun Zhou
    Leilei Qiao
    Yuanze Li
    Yang Wu
    Jiaying Zhai
    Guobin Liu
    Sha Xue
    Journal of Soil Science and Plant Nutrition, 2023, 23 : 5133 - 5144