Slow Propagation Velocities in Schrödinger Operators with Large Periodic Potential

被引:0
作者
Abdul-Rahman, Houssam [1 ]
Darras, Mohammed [1 ]
Fischbacher, Christoph [2 ]
Stolz, Gunter [3 ]
机构
[1] United Arab Emirates Univ, Coll Sci, Dept Math Sci, Al Ain 15551, U Arab Emirates
[2] Baylor Univ, Dept Math, Sid Richardson Bldg, 1410 S 4th St, Waco, TX 76706 USA
[3] Univ Alabama Birmingham, Dept Math, Birmingham, AL 35294 USA
来源
ANNALES HENRI POINCARE | 2024年
关键词
LIEB-ROBINSON BOUNDS; HARMONIC-OSCILLATOR SYSTEMS; MANY-BODY LOCALIZATION; QUANTUM; LATTICE;
D O I
10.1007/s00023-024-01520-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Schr odinger operators with periodic potential have generallybeen shown to exhibit ballistic transport. In this work, we investigatewhether the propagation velocity, while positive, can be made arbitrar-ily small by a suitable choice of the periodic potential. We consider thediscrete one-dimensional Schr odinger operator Delta +mu V, where Delta is thediscrete Laplacian,Vis ap-periodic non-degenerate potential and mu>0.We establish a Lieb-Robinson-type bound with a group velocity thatscales likeO(1/mu)as mu ->infinity. This shows the existence of a linear lightcone with a maximum velocity of quantum propagation that is decayingat a rate proportional to 1/mu. Furthermore, we prove that the asymptoticvelocity, or the average velocity of the time-evolved state, exhibits a decayproportional toO(1/mu p-1)as mu ->infinity
引用
收藏
页数:29
相关论文
共 50 条
[1]   Entanglement Bounds in the XXZ Quantum Spin Chain [J].
Abdul-Rahman, H. ;
Fischbacher, C. ;
Stolz, G. .
ANNALES HENRI POINCARE, 2020, 21 (07) :2327-2366
[2]   Exponentially Decaying Velocity Bounds of Quantum Walks in Periodic Fields [J].
Abdul-Rahman, Houssam ;
Stolz, Guenter .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 403 (03) :1297-1327
[3]   Dynamical evolution of entanglement in disordered oscillator systems [J].
Abdul-Rahman, Houssam .
REVIEWS IN MATHEMATICAL PHYSICS, 2023, 35 (03)
[4]   On the regime of localized excitations for disordered oscillator systems [J].
Abdul-Rahman, Houssam ;
Sims, Robert ;
Stolz, Gunter .
LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (06) :1159-1189
[5]   Correlations in disordered quantum harmonic oscillator systems: The effects of excitations and quantum quenches [J].
Abdul-Rahman, Houssam ;
Sims, Robert ;
Stolz, Guenter .
MATHEMATICAL PROBLEMS IN QUANTUM PHYSICS, 2018, 717 :31-47
[6]   Localization properties of the disordered XY spin chain: A review of mathematical results with an eye toward many-body localization [J].
Abdul-Rahman, Houssam ;
Nachtergaele, Bruno ;
Sims, Robert ;
Stolz, Gunter .
ANNALEN DER PHYSIK, 2017, 529 (07)
[7]   Localization bounds for an electron gas [J].
Aizenman, M ;
Graf, GM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (32) :6783-6806
[8]   Absolutely continuous spectrum implies ballistic transport for quantum particles in a random potential on tree graphs [J].
Aizenman, Michael ;
Warzel, Simone .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (09)
[9]  
Anantharaman N., 2019, ANN MATH, V189, P753, DOI [DOI 10.4007/annals.2019.189.3.3, 10.4007/annals.2019.189.3.3]
[10]  
[Anonymous], 1999, Matrix Differential Calculus with Applications in Statistics and Econometrics