EZH2 promotes B-cell autoimmunity in primary Sjogren's syndrome via METTL3-mediated m6A modification

被引:0
作者
Yang, Yiying [1 ,2 ,3 ,4 ]
Li, Muyuan [1 ,2 ,3 ,5 ,6 ]
Ding, Liqing [1 ,5 ,6 ]
Zhang, Ying [2 ,3 ]
Liu, Ke [2 ,3 ]
Liu, Meidong [2 ,3 ]
Li, Yisha [1 ,5 ,6 ]
Luo, Hui [1 ,5 ,6 ]
Zuo, Xiaoxia [1 ,5 ,6 ]
Zhang, Huali [1 ,2 ,3 ]
Guo, Muyao [1 ,5 ,6 ]
机构
[1] Cent South Univ, Xiangya Hosp, Dept Rheumatol, Changsha, Hunan, Peoples R China
[2] Cent South Univ, Sch Basic Med Sci, Dept Pathophysiol, Changsha, Hunan, Peoples R China
[3] Sepsis Translat Med Key Lab Hunan Prov, Changsha, Hunan, Peoples R China
[4] Cent South Univ, Sch Basic Med Sci, Postdoctoral Res Stn Biol, Changsha, Hunan, Peoples R China
[5] Cent South Univ, Xiangya Hosp, Prov Clin Res Ctr Rheumat & Immunol Dis, Changsha, Hunan, Peoples R China
[6] Cent South Univ, Xiangya Hosp, Natl Clin Res Ctr Geriatr Disorders, Changsha, Hunan, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
EZH2; B -Cell autoimmunity; pSS; METTL3; m6A; METHYLATION; PATHOGENESIS; METABOLISM;
D O I
10.1016/j.jaut.2024.103341
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Objective: Enhancer of zeste homologue 2 (EZH2) plays an important role in promoting B-cell activation and differentiation. This study aimed to elucidate the role of EZH2 in the B-cell autoimmune response in primary Sjo<spacing diaeresis>gren's syndrome (pSS) and to explore the therapeutic potential of inhibiting EZH2 in pSS. Methods: Single-cell RNA sequencing analysis of B cells in peripheral blood from pSS patients was conducted to identify abnormal expression of EZH2 and METTL3 in B-cell subsets. The levels of EZH2 were further validated across multiple B-cell subsets and the salivary glands (SGs) of pSS patients, as well as three different mouse models of Sjo<spacing diaeresis>gren's syndrome (SS). Correlation analyses were performed to explore the relationship between the expression of EZH2 and clinical features of pSS patients. Following EZH2 inhibition, SS-like signs and antibody production were assessed in an experimental Sjo<spacing diaeresis>gren syndrome (ESS) mouse model. RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) data post-EZH2 inhibition were bioinformatically analyzed to identify the EZH2 targets in pSS. ChIP-qPCR was performed to validate the binding of H3K27me3 to the CDKN1A promoter. Flow cytometric apoptosis analysis and Carboxy Fluorescein Succinimidyl Ester (CFSE) assay were used to assess the impact of an EZH2 inhibitor on B-cell apoptosis and proliferation. Additionally, METTL3 expression and its correlation with disease activity were analyzed in pSS patients. EZH2 expression was examined after METTL3 knockdown. METTL3-RNA immunoprecipitation (RIP) and actinomycin D assays were conducted to confirm the direct binding of METTL3 to EZH2 mRNA and its impact on mRNA stability. M6A-RIPqPCR was performed to validate the presence of m6A modifications on EZH2 mRNA. Results: EZH2 was found upregulated in multiple B-cell subsets from the peripheral blood and SGs of pSS patients, as well as in three different animal models of SS. The expression of EZH2 in B cells was positively correlated with the ESSDAI score, which is a measure of disease activity. With treatment of EZH2 inhibitor, SS-like signs alleviated and autoantibody production reduced in ESS mice. Similarly, in pSS patients, METTL3 expression was increased in the SGs and peripheral blood CD19+ B cells, also showing a positively correlated with the ESSDAI score. With knockdown of METTL3, the expression of EZH2 reduced. Mechanistically, EZH2 inhibited B-cell apoptosis and promoted B-cell proliferation by catalyzing H3K27me3 modification at the CDKN1A locus. Furthermore, METTL3 bound to EZH2 mRNA and increased m6A modification on EZH2 mRNA, enhancing its stability and promoting EZH2 expression. Conclusions: The upregulation of EZH2 mediated by METTL3 is implicated in the B-cell autoimmune response in pSS. Inhibition of EZH2 presents a promising therapeutic strategy for pSS treatment.
引用
收藏
页数:18
相关论文
共 47 条
  • [21] METTL14 promotes glomerular endothelial cell injury and diabetic nephropathy via m6A modification of α-klotho
    Li, Manna
    Deng, Le
    Xu, Gaosi
    MOLECULAR MEDICINE, 2021, 27 (01)
  • [22] Increased METTL3 expression and m6A RNA methylation may contribute to the development of dry eye in primary Sjogren's syndrome
    Ma, Jun
    Wang, Xiaotang
    Yang, Xue
    Wang, Xi
    Tan, Tongshan
    Fang, Hongping
    Zhong, Yu
    Zhang, Qi
    BMC OPHTHALMOLOGY, 2023, 23 (01)
  • [23] METTL5-mediated 18S rRNA m6A modification promotes oncogenic mRNA translation and intrahepatic
    Dai, Zihao
    Zhu, Wanjie
    Hou, Yingdong
    Zhang, Xinyue
    Ren, Xuxin
    Lei, Kai
    Liao, Junbin
    Liu, Haining
    Chen, Zhihang
    Peng, Sui
    Li, Shaoqiang
    Lin, Shuibin
    Kuang, Ming
    MOLECULAR THERAPY, 2023, 31 (11) : 3225 - 3242
  • [24] Exenatide ameliorates hydrogen peroxide-induced pancreatic ?-cell apoptosis through regulation of METTL3-mediated m6A methylation
    Zhou, Simin
    Sun, Yue
    Xing, Yujie
    Wang, Zhi
    Wan, Shujun
    Yao, Xinming
    Hua, Qiang
    Meng, Xiangjian
    Cheng, Jinhan
    Zhong, Min
    Lv, Kun
    Kong, Xiang
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2022, 924
  • [25] Small Extracellular Vesicles Promote HBV Replication via METTL3-IGF2BP2-Mediated m6A Modification
    Zhang, Jie
    Yu, Ling
    Wu, Xinyu
    Pan, Wanlong
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2025, 30 (03):
  • [26] METTL3-Mediated m6A Modification Regulates the Polycomb Repressive Complex 1 Components BMI1 and RNF2 in Hepatocellular Carcinoma Cells
    Chen, Weina
    Zhang, Jinqiang
    Ma, Wenbo
    Liu, Nianli
    Wu, Tong
    MOLECULAR CANCER RESEARCH, 2025, 23 (03) : 190 - 201
  • [27] METTL3 modulates m6A modification of CDC25B and promotes head and neck squamous cell carcinoma malignant progression
    Guo, Yu-qing
    Wang, Qiang
    Wang, Jun-guo
    Gu, Ya-jun
    Song, Pan-pan
    Wang, Shou-yu
    Qian, Xiao-yun
    Gao, Xia
    EXPERIMENTAL HEMATOLOGY & ONCOLOGY, 2022, 11 (01)
  • [28] MSC Promotes the Secretion of Exosomal miR-34a-5p and Improve Intestinal Barrier Function Through METTL3-Mediated Pre-miR-34A m6A Modification
    Li, Yi-Jun
    Xu, Qing-Wen
    Xu, Cong-Hui
    Li, Wei-Ming
    MOLECULAR NEUROBIOLOGY, 2022, 59 (08) : 5222 - 5235
  • [29] METTL3-mediated m6A modification of lncRNA SNHG3 accelerates gastric cancer progression by modulating miR-186-5p/cyclinD2 axis
    Ji, Guo
    Wang, Xiu
    Xi, Hao
    INTERNATIONAL JOURNAL OF IMMUNOPATHOLOGY AND PHARMACOLOGY, 2023, 37
  • [30] STM2457 Inhibits METTL3-Mediated m6A Modification of miR-30c to Alleviate Spinal Cord Injury by Inducing the ATG5-Mediated Autophagy
    Chen, Gang
    Shangguan, Zhitao
    Ye, Xiaoqing
    Chen, Zhi
    Li, Jiandong
    Liu, Wenge
    NEUROSPINE, 2024, 21 (03) : 925 - 941