Hierarchical gelatin-derived hydrogel film with reactive oxygen species scavenging properties for spinal cord injury repair

被引:1
作者
Su, Haiwen [1 ,4 ]
Ma, Yanyu [2 ]
Li, Wenhan [3 ]
Ren, Haoyu [1 ]
Maimaitikelimu, Xiayidan [1 ]
Lin, Fangsiyu [1 ]
Zhang, Hongbo [1 ]
Liu, Shuai [1 ]
Chen, Quanchi [2 ]
Wang, Huan [1 ]
机构
[1] Sun Yat Sen Univ, Affiliated Hosp 8, Shenzhen 518033, Peoples R China
[2] Nanjing Univ, Nanjing Drum Tower Hosp, Affiliated Hosp, Dept Orthoped Surg,Div Spine Surg,Med Sch, Nanjing 210008, Peoples R China
[3] Univ Elect Sci & Technol China, Sichuan Prov Peoples Hosp, Dept Neurosurg, Chengdu 610072, Peoples R China
[4] Guangdong Med Univ, Affiliated Hosp, Orthopaed Ctr, Zhanjiang 524013, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Spinal cord injury; Hierarchical structure; Microgrooves; Inverse opal structure; Reactive oxygen species scavenging;
D O I
10.1016/j.cej.2024.158134
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Spinal cord injury (SCI) is a complicated central nervous system disease that is difficult to recover due to poor topological cues and adverse microenvironment. Herein, we present a gelatin-derived hydrogel film with a hierarchical structure and reactive oxygen species (ROS) scavenging capability for SCI treatment. The hierarchical structure of microscale grooves and nanoscale pores was realized by the combination of lithography and grooved colloidal crystal film templates. Due to the unique microstructure and excellent biocompatibility, the cells cultured on the hydrogel film showed good viability and orientation. Besides, the enzymes were modified on the hydrogel film for ROS elimination, and thus, the film displayed good capabilities in resisting oxidation and inflammation. When the hydrogel film was implanted in the SCI area, it could guide the oriented growth of newborn neurons by the hierarchical structure and scavenge the ROS to reduce the ROS damage and inflammation by the enzymes, which benefited the SCI repair and motor recovery. These results suggest the potential of hierarchical gelatin-derived hydrogel film with ROS scavenging properties as an innovative biomaterial to facilitate SCI repair and enhance motor recovery.
引用
收藏
页数:13
相关论文
共 65 条
[11]   Bio-inspired self-healing structural color hydrogel [J].
Fu, Fanfan ;
Chen, Zhuoyue ;
Zhao, Ze ;
Wang, Huan ;
Shang, Luoran ;
Gu, Zhongze ;
Zhao, Yuanjin .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (23) :5900-5905
[12]   Cells Cultured on Core-Shell Photonic Crystal Barcodes for Drug Screening [J].
Fu, Fanfan ;
Shang, Luoran ;
Zheng, Fuyin ;
Chen, Zhuoyue ;
Wang, Huan ;
Wang, Jie ;
Gu, Zhongze ;
Zhao, Yuanjin .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (22) :13840-13848
[13]   An anti-inflammatory and neuroprotective biomimetic nanoplatform for repairing spinal cord injury [J].
Gao, Xiang ;
Han, Zhihui ;
Huang, Cheng ;
Lei, Huali ;
Li, Guangqiang ;
Chen, Lin ;
Feng, Dandan ;
Zhou, Zijie ;
Shi, Qin ;
Cheng, Liang ;
Zhou, Xiaozhong .
BIOACTIVE MATERIALS, 2022, 18 :569-582
[14]   Regenerative rehabilitation with conductive biomaterials for spinal cord injury [J].
Kiyotake, Emi A. ;
Martin, Michael D. ;
Detamore, Michael S. .
ACTA BIOMATERIALIA, 2022, 139 :43-64
[15]   Recombinant human collagen hydrogels with hierarchically ordered microstructures for corneal stroma regeneration [J].
Kong, Bin ;
Sun, Lingyu ;
Liu, Rui ;
Chen, Yun ;
Shang, Yixuan ;
Tan, Hui ;
Zhao, Yuanjin ;
Sun, Lingyun .
CHEMICAL ENGINEERING JOURNAL, 2022, 428
[16]   A multi-channel collagen conduit with aligned Schwann cells and endothelial cells for enhanced neuronal regeneration in spinal cord injury [J].
Lee, Hye Yeong ;
Moon, Seo Hyun ;
Kang, Donggu ;
Choi, Eunjeong ;
Yang, Gi Hoon ;
Kim, Keung Nyun ;
Won, Joo Yun ;
Yi, Seong .
BIOMATERIALS SCIENCE, 2023, 11 (24) :7884-7896
[17]   Copper Tannic Acid Coordination Nanosheet: A Potent Nanozyme for Scavenging ROS from Cigarette Smoke [J].
Lin, Shichao ;
Cheng, Yuan ;
Zhang, He ;
Wang, Xiaoyu ;
Zhang, Yuye ;
Zhang, Yuanjian ;
Miao, Leiying ;
Zhao, Xiaozhi ;
Wei, Hui .
SMALL, 2020, 16 (27)
[18]   Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications [J].
Liu, Shuai ;
Yu, Jiang-Ming ;
Gan, Yan-Chang ;
Qiu, Xiao-Zhong ;
Gao, Zhe-Chen ;
Wang, Huan ;
Chen, Shi-Xuan ;
Xiong, Yuan ;
Liu, Guo-Hui ;
Lin, Si-En ;
McCarthy, Alec ;
John, Johnson V. ;
Wei, Dai-Xu ;
Hou, Hong-Hao .
MILITARY MEDICAL RESEARCH, 2023, 10 (01)
[19]   Walking naturally after spinal cord injury using a brain-spine interface [J].
Lorach, Henri ;
Galvez, Andrea ;
Spagnolo, Valeria ;
Martel, Felix ;
Karakas, Serpil ;
Intering, Nadine ;
Vat, Molywan ;
Faivre, Olivier ;
Harte, Cathal ;
Komi, Salif ;
Ravier, Jimmy ;
Collin, Thibault ;
Coquoz, Laure ;
Sakr, Icare ;
Baaklini, Edeny ;
Hernandez-Charpak, Sergio Daniel ;
Dumont, Gregory ;
Buschman, Rik ;
Buse, Nicholas ;
Denison, Tim ;
van Nes, Ilse ;
Asboth, Leonie ;
Watrin, Anne ;
Struber, Lucas ;
Sauter-Starace, Fabien ;
Langar, Lilia ;
Auboiroux, Vincent ;
Carda, Stefano ;
Chabardes, Stephan ;
Aksenova, Tetiana ;
Demesmaeker, Robin ;
Charvet, Guillaume ;
Bloch, Jocelyne ;
Courtine, Gregoire .
NATURE, 2023, 618 (7963) :126-+
[20]   An injectable, self-healing, electroconductive extracellular matrix-based hydrogel for enhancing tissue repair after traumatic spinal cord injury [J].
Luo, Yian ;
Fan, Lei ;
Liu, Can ;
Wen, Huiquan ;
Wang, Shihuan ;
Guan, Pengfei ;
Chen, Dafu ;
Ning, Chengyun ;
Zhou, Lei ;
Tan, Guoxin .
BIOACTIVE MATERIALS, 2022, 7 :98-111