Hydrogen production from seawater electrolysis

被引:3
|
作者
Wang, Tianjiao [1 ]
Yuan, Yuliang [1 ]
Shi, Wenjuan [1 ]
Li, Gai [2 ]
Rao, Peng [1 ]
Li, Jing [1 ]
Kang, Zhenye [1 ]
Tian, Xinlong [1 ]
机构
[1] Hainan Univ, Sch Marine Sci & Engn, State Key Lab Marine Resource Utilizat South China, Haikou 570228, Hainan, Peoples R China
[2] Hainan Normal Univ, Sch Chem & Chem Engn, Key Lab Electrochem Energy Storage & Energy Conver, Haikou 571158, Hainan, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1039/d4cc05143b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The world's energy landscape is undergoing a significant transformation, driven by the urgent need to address the climate issues and growing sustainable energy demand. Hydrogen can be produced from renewable sources and may play a crucial role in the zero-carbon economy, which is regarded as a promising alternative to fossil fuels. Currently, hydrogen production via water electrolysis still relies on high-purity water, while seawater electrolysis benefits from the abundance of seawater, which can be particularly beneficial for water-scarce countries, and deep-sea applications, such as floating platforms or islands. However, it faces several challenges, such as impurities in seawater, the harsh marine environment, and unpredictable costs. Ongoing research and development efforts are focused on addressing these challenges through innovative solutions, including the design of robust electrocatalysts, the development of smart integrated structures, and the exploration of innovative coupled systems. In this review, the significant progress mentioned above aimed at improving the efficiency of seawater electrolysis is briefly discussed, and the challenges and prospects are provided.
引用
收藏
页码:1719 / 1728
页数:10
相关论文
共 50 条
  • [21] Mg/seawater batteries driven self-powered direct seawater electrolysis systems for hydrogen production
    Xu, Yingshuang
    Lv, Honghao
    Lu, Huasen
    Quan, Qinghao
    Li, Wenzhen
    Cui, Xuejing
    Liu, Guangbo
    Jiang, Luhua
    NANO ENERGY, 2022, 98
  • [22] Sustainable Hydrogen Production from Seawater Electrolysis: Through Fundamental Electrochemical Principles to the Most Recent Development
    Badea, Gabriela Elena
    Hora, Cristina
    Maior, Ioana
    Cojocaru, Anca
    Secui, Calin
    Filip, Sanda Monica
    Dan, Florin Ciprian
    ENERGIES, 2022, 15 (22)
  • [23] RESEARCH ON STRATEGIC AND TECHNICAL OF HYDROGEN PRODUCTION BY DEEP OFFSHORE IN SITU ELECTROLYSIS OF SEAWATER
    Hu, Peng
    Li, Zhichuan
    Li, Zihang
    Lao, Jingshui
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (08): : 63 - 71
  • [24] Energy-Saving Hydrogen Production by Seawater Electrolysis Coupling Sulfion Degradation
    Zhang, Liuyang
    Wang, Zhiyu
    Qiu, Jieshan
    ADVANCED MATERIALS, 2022, 34 (16)
  • [25] Durability enhancement and degradation of oxygen evolution anodes in seawater electrolysis for hydrogen production
    Kato, Zenta
    Bhattarai, Jagadeesh
    Kumagai, Naokazu
    Izumiya, Koichi
    Hashimoto, Koji
    APPLIED SURFACE SCIENCE, 2011, 257 (19) : 8230 - 8236
  • [26] Self-Powered Seawater Electrolysis Based on a Triboelectric Nanogenerator for Hydrogen Production
    Zhang, Baofeng
    Zhang, Chuguo
    Yang, Ou
    Yuan, Wei
    Liu, Yuebo
    He, Lixia
    Hu, Yuexiao
    Zhao, Zhihao
    Zhou, Linglin
    Wang, Jie
    Wang, Zhong Lin
    ACS Nano, 2022, 16 (09) : 15286 - 15296
  • [27] Modulating selectivity and stability of the direct seawater electrolysis for sustainable green hydrogen production
    Yao, Dazhi
    Liu, Chun
    Zhang, Yanzhao
    Wang, Shuhao
    Nie, Yan
    Qiao, Man
    Zhu, Dongdong
    Materials Today Catalysis, 2025, 8
  • [28] Self-Powered Seawater Electrolysis Based on a Triboelectric Nanogenerator for Hydrogen Production
    Zhang, Baofeng
    Zhang, Chuguo
    Yang, Ou
    Yuan, Wei
    Liu, Yuebo
    He, Lixia
    Hu, Yuexiao
    Zhao, Zhihao
    Zhou, Linglin
    Wang, Jie
    Wang, Zhong Lin
    ACS NANO, 2022, : 15286 - 15296
  • [29] Advancing green hydrogen: Innovations and challenges in seawater electrolysis for sustainable energy production
    Gomaa, Fatma A.
    Nada, Amr A.
    Gomaa, Hassan E. M.
    El-Maghrabi, Heba H.
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (02):
  • [30] Green hydrogen from seawater electrolysis: Recent developments and future perspectives
    Bamba, Jaira Neibel
    Dumlao, Alicia Theresse
    Lazaro, Rosela Mae
    Matienzo, D. J. Donn
    Ocon, Joey
    CURRENT OPINION IN ELECTROCHEMISTRY, 2024, 48