Analytical and numerical techniques for solving a fractional integrodifferential equation in complex space

被引:0
|
作者
Shammaky, Amnah E. [1 ]
Youssef, Eslam M. [2 ]
机构
[1] Jazan Univ, Fac Sci, Dept Math, Jazan 45142, Saudi Arabia
[2] Alexandria Univ, Fac Educ, Dept Math, Alexandria 21256, Egypt
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 11期
关键词
fractional calculus; complex plane; fixed point theorem; rationalized Haar wavelet; Euler wavelet method; EXISTENCE;
D O I
10.3934/math.20241543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we describe the existence and uniqueness of a solution to the nonlinear fractional Volterra integro differential equation in complex space using the fixed-point theory. We also examine the remarkably effective Euler wavelet method, which converts the model to a matrix structure that lines up with a system of algebraic linear equations; this method then provides approximate solutions for the given problem. The proposed technique demonstrates superior accuracy in numerical solutions when compared to the Euler wavelet method. Although we provide two cases of computational methods using MATLAB R2022b, which could be the final step in confirming the theoretical investigation.
引用
收藏
页码:32138 / 32156
页数:19
相关论文
共 50 条
  • [41] Numerical Methods for Solving the Fractional Thomas-Fermi Equation
    Dahmani, Zoubir
    Anber, Ahmed
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2015, 18 (1-2) : 35 - 41
  • [42] A numerical method for solving the time fractional Schrödinger equation
    Na Liu
    Wei Jiang
    Advances in Computational Mathematics, 2018, 44 : 1235 - 1248
  • [43] Two numerical methods for solving conformable fractional KGE equation
    Anber, Ahmed
    Dahmani, Zoubir
    Sarikaya, Algeria Mehmet Zeki
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2024, 27 (06) : 1361 - 1370
  • [44] A new numerical method for solving semilinear fractional differential equation
    Wei, Yufen
    Guo, Ying
    Li, Yu
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (02) : 1289 - 1311
  • [45] CONTROLLABILITY OF NONLOCAL FRACTIONAL SEMILINEAR INTEGRODIFFERENTIAL EQUATION
    Ahmed, Hamdy M.
    Mohamed, Amany S.
    Al-Nahhas, Mahmoud A.
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2016, 17 (01): : 13 - 25
  • [46] Numerical Methods for Solving the Time-fractional Telegraph Equation
    Wei, Leilei
    Liu, Lijie
    Sun, Huixia
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (06): : 1509 - 1528
  • [47] Numerical approach for solving fractional relaxation-oscillation equation
    Gulsu, Mustafa
    Ozturk, Yalcin
    Anapali, Ayse
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (08) : 5927 - 5937
  • [48] An efficient numerical technique for solving time fractional Burgers equation
    Akram, Tayyaba
    Abbas, Muhammad
    Riaz, Muhammad Bilal
    Ismail, Ahmad Izani
    Ali, Norhashidah Mohd
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (04) : 2201 - 2220
  • [49] Analytical study of the time-fractional Smoluchowski coagulation equation in light of different integrodifferential operators
    Bona, Zuhir M.
    Madkour, M. A.
    Mahmoud, Abeer A.
    Tawfik, Ashraf M.
    NONLINEAR DYNAMICS, 2025, 113 (04) : 3753 - 3762
  • [50] Analytical and numerical method for solution of integrodifferential equation of radiative transfer in enclosure of arbitrary geometry
    German, ML
    Nekrasov, VP
    Nogotov, EF
    DOKLADY AKADEMII NAUK BELARUSI, 1998, 42 (01): : 67 - 73