PREDICTION OF PCFDNA LEVELS, PROGRESSION-FREE SURVIVAL, AND OVERALL SURVIVAL THROUGH MACHINE-LEARNING MODELS BASED ON MRI-DERIVED RADIOMIC FEATURES IN PATIENTS WITH NEWLY DIAGNOSED GLIOBLASTOMA

被引:0
作者
Nocera, G. [1 ,2 ,3 ,4 ]
Pecco, N. [1 ,2 ,3 ]
Pieri, V [1 ,5 ]
Palazzo, L. [1 ,5 ]
D'Oria, F. [1 ]
Della Rosa, P. [2 ,3 ]
Bailo, M. [4 ]
Finocchiaro, G. [5 ]
Mortini, P. [1 ,4 ]
Falini, A. [1 ,2 ,3 ]
Filippi, M. [1 ,5 ]
Berzero, G. [1 ,5 ]
Castellano, A. [1 ,2 ,3 ]
机构
[1] Univ Vita Salute San Raffaele, Milan, Italy
[2] IRCCS San Raffaele Hosp, Dept Neuroradiol, Milan, Italy
[3] IRCCS San Raffaele Hosp, CERMAC, Milan, Italy
[4] IRCCS San Raffaele Hosp, Dept Neurosurg & Gamma Knife Radiosurg, Milan, Italy
[5] IRCCS San Raffaele Hosp, Dept Neurol, Milan, Italy
关键词
D O I
10.1093/neuonc/noae144.200
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
引用
收藏
页码:V61 / V61
页数:1
相关论文
empty
未找到相关数据