Quantum Chemical Density Matrix Renormalization Group Method Boosted by Machine Learning

被引:0
作者
Golub, Pavlo [1 ]
Yang, Chao [2 ]
Vlcek, Vojtech [3 ,4 ]
Veis, Libor [5 ]
机构
[1] Czech Acad Sci, J Heyrovsky Inst Phys Chem, Vvi, Prague 18223, Czech Republic
[2] Lawerence Berkeley Natl Lab, Appl Math & Computat Res Div, Berkeley, CA 94720 USA
[3] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93117 USA
[4] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93117 USA
[5] Czech Acad Sci, J Heyrovsky Inst Phys Chem, Vvi, Prague 18223, Czech Republic
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2025年 / 16卷 / 13期
关键词
AB-INITIO;
D O I
10.1021/acs.jpclett.5c00207
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The use of machine learning (ML) to refine low-level theoretical calculations to achieve higher accuracy is a promising and actively evolving approach known as Delta-ML. The density matrix renormalization group (DMRG) is a powerful variational approach widely used for studying strongly correlated quantum systems. High computational efficiency can be achieved without compromising accuracy. Here, we demonstrate the potential of a simple ML model to significantly enhance the performance of the quantum chemical DMRG method.
引用
收藏
页码:3295 / 3301
页数:7
相关论文
共 39 条
  • [1] The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges
    Baiardi, Alberto
    Reiher, Markus
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (04)
  • [2] DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR
    BECKE, AD
    [J]. PHYSICAL REVIEW A, 1988, 38 (06): : 3098 - 3100
  • [3] ?-Machine Learned Potential Energy Surfaces and Force Fields
    Bowman, Joel M.
    Qu, Chen
    Conte, Riccardo
    Nandi, Apurba
    Houston, Paul L.
    Yu, Qi
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (01) : 1 - 17
  • [4] The Density Matrix Renormalization Group in Quantum Chemistry
    Chan, Garnet Kin-Lic
    Sharma, Sandeep
    [J]. ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 62, 2011, 62 : 465 - 481
  • [5] Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group
    Chan, GKL
    Head-Gordon, M
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (11) : 4462 - 4476
  • [6] A universal density matrix functional from molecular orbital-based machine learning: Transferability across organic molecules
    Cheng, Lixue
    Welborn, Matthew
    Christensen, Anders S.
    Miller, Thomas F., III
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (13)
  • [7] Interpretable Graph-Network-Based Machine Learning Models via Molecular Fragmentation
    Collins, Eric M.
    Raghavachari, Krishnan
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (10) : 2804 - 2810
  • [9] github.com, ABOUT US
  • [10] Data-Driven Refinement of Electronic Energies from Two-Electron Reduced-Density-Matrix Theory
    Jones, Grier M.
    Li, Run R.
    DePrince III, A. Eugene
    Vogiatzis, Konstantinos D.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (28) : 6377 - 6385