Review of vibration induced by gas-liquid two-phase flow inside pipes

被引:1
作者
Ding, Lin [1 ]
Fu, Yitong [1 ]
Li, Xiang [1 ,2 ]
Ran, Jingyu [1 ]
机构
[1] Chongqing Univ, Key Lab Low grade Energy Utilizat Technol & Syst, Minist Educ China, Chongqing, Peoples R China
[2] Aero Engine Corp China, Sichuan Gas Turbine Estab, Mianyang, Peoples R China
基金
中国国家自然科学基金;
关键词
Gas-liquid two phase flow; Flow-induced vibration; Two-phase flow excitation force; Pipe dynamic response; Noise; DRIFT-FLUX MODEL; HANGING FLEXIBLE RISER; PIPING STRUCTURE; NEURAL-NETWORKS; VOID FRACTION; SLUG FLOW; FORCES; BENDS; DIAMETER; BEHAVIOR;
D O I
10.1016/j.oceaneng.2024.120006
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Two-phase flow is a prevalent phenomenon encountered in engineering systems. In pipelines, the existence of two-phase flow introduces more intricate fluctuations in the excitation force compared to single-phase flow, leading to intensified vibrations known as Flow-Induced Vibration(FIV). FIV in pipelines with two-phase flow involves complex theoretical calculations, experiments, and simulations. This paper provides a comprehensive and detailed review of the internal gas-liquid two-phase FIV without phase change. It covers various aspects, including theoretical models, research methods, factors influencing FIV, factors influencing the dynamic response of pipes, and noise generated by internal two-phase flow. It presents the current frontiers of development in these fields, summarizes existing shortcomings, and outlines research prospects and future challenges. The latest research focuses on the construction of unsteady flow theoretical models, improving the tracking accuracy of phase interfaces, the application of VOF and two-fluid models in different flow patterns, and the application of machine learning. The primary challenge at present is to reduce the uncertainty in void fraction correlations and interphase relationship models; enhance the accuracy of phase interface simulations and effectively capture bubble dynamics in two-phase flow numerical models; and investigate the mechanisms of two-phase FIV coupled with external vortex-induced vibrations in long vertical pipes.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Analysis and calculation of void fraction of gas-liquid two-phase flow in vertical riser under fluctuating vibration
    Liu Q.
    Zhou Y.
    Chen C.
    Huagong Xuebao/CIESC Journal, 2023, 74 (06): : 2391 - 2403
  • [32] Internal two-phase flow induced vibrations: A review
    Haile, Samuel Gebremariam
    Woschke, Elmar
    Tibba, Getachew Shunki
    Pandey, Vivek
    COGENT ENGINEERING, 2022, 9 (01):
  • [33] Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process
    Wang Bo
    Shen Shiyi
    Ruan Yanwei
    Cheng Shuyong
    Peng Wangjun
    Zhang Jieyu
    ACTA METALLURGICA SINICA, 2020, 56 (04) : 619 - 632
  • [34] Fundamental data on the gas-liquid two-phase flow in minichannels
    Ide, Hideo
    Kariyasaki, Akira
    Fukano, Tohru
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2007, 46 (06) : 519 - 530
  • [35] Measurement of Gas-Liquid Two-Phase Flow in Draft Tube
    Li, Jinfeng
    Chen, Wuguang
    Zhang, Zhengchuan
    Xu, Yongliang
    Li, Kaiying
    Yin, Junlian
    Wang, Dezhong
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2024, 58 (08): : 1188 - 1200
  • [36] A study on flow regime of gas-liquid two-phase in a horizontal channel under transverse vibration
    Sun B.
    Zhou Y.
    Liu Q.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2021, 40 (20): : 302 - 306
  • [37] Two-Phase Flow in Miniature Geometries: Comparison of Gas-Liquid and Liquid-Liquid Flows
    Verma, Raj Kumar
    Ghosh, Sumana
    CHEMBIOENG REVIEWS, 2019, 6 (01): : 5 - 16
  • [38] The Effects of Inlet Geometry and Gas-Liquid Mixing on Two-Phase Flow in Microchannels
    Kawaji, M.
    Mori, K.
    Bolintineanu, D.
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2009, 131 (04): : 0413021 - 0413027
  • [39] T-junction separation modelling in gas-liquid two-phase flow
    Margaris, Dionissios P.
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2007, 46 (02) : 150 - 158
  • [40] Investigation of pressurized gas-liquid two-phase flow with electrical capacitance tomography
    Liang, Shiguo
    Wang, Ruican
    Wang, Haigang
    Ye, Jiamin
    Yang, Wuqiang
    2019 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2019, : 1342 - 1347