Estimation and Model Misspecification for Recurrent Event Data with Covariates Under Measurement Errors
被引:0
|
作者:
Alahakoon, Ravinath
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tennessee Chattanooga, Gary W Rollins Coll Business, Chattanooga, TN 37403 USAUniv Tennessee Chattanooga, Gary W Rollins Coll Business, Chattanooga, TN 37403 USA
Alahakoon, Ravinath
[1
]
Zamba, Gideon K. D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Dept Biostat, Iowa City, IA 52242 USAUniv Tennessee Chattanooga, Gary W Rollins Coll Business, Chattanooga, TN 37403 USA
Zamba, Gideon K. D.
[2
]
Wen, Xuerong Meggie
论文数: 0引用数: 0
h-index: 0
机构:
Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USAUniv Tennessee Chattanooga, Gary W Rollins Coll Business, Chattanooga, TN 37403 USA
Wen, Xuerong Meggie
[3
]
Adekpedjou, Akim
论文数: 0引用数: 0
h-index: 0
机构:
Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USAUniv Tennessee Chattanooga, Gary W Rollins Coll Business, Chattanooga, TN 37403 USA
Adekpedjou, Akim
[3
]
机构:
[1] Univ Tennessee Chattanooga, Gary W Rollins Coll Business, Chattanooga, TN 37403 USA
[2] Univ Iowa, Dept Biostat, Iowa City, IA 52242 USA
[3] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
For subject i, we monitor an event that can occur multiple times over a random observation window [0, tau i). At each recurrence, p concomitant variables, xi, associated to the event recurrence are recorded-a subset (q <= p) of which is measured with errors. To circumvent the problem of bias and consistency associated with parameter estimation in the presence of measurement errors, we propose inference for corrected estimating equations with well-behaved roots under an additive measurement errors model. We show that estimation is essentially unbiased under the corrected profile likelihood for recurrent events, in comparison to biased estimations under a likelihood function that ignores correction. We propose methods for obtaining estimators of error variance and discuss the properties of the estimators. We further investigate the case of misspecified error models and show that the resulting estimators under misspecification converge to a value different from that of the true parameter-thereby providing a basis for bias assessment. We demonstrate the foregoing correction methods on an open-source rhDNase dataset gathered in a clinical setting.
机构:
Shenzhen Univ, Coll Math & Stat, Shenzhen, Peoples R ChinaShenzhen Univ, Coll Math & Stat, Shenzhen, Peoples R China
Zhang, Jun
Yang, Baojun
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Math & Stat, Shenzhen, Peoples R ChinaShenzhen Univ, Coll Math & Stat, Shenzhen, Peoples R China
Yang, Baojun
Feng, Zhenghui
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Econ, Xiamen, Peoples R China
Xiamen Univ, Wang Yanan Inst Studies Econ, Xiamen, Peoples R ChinaShenzhen Univ, Coll Math & Stat, Shenzhen, Peoples R China
机构:
Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
Zhao, Xingqiu
Liu, Li
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R ChinaHong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
Liu, Li
Liu, Yanyan
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R ChinaHong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
Liu, Yanyan
Xu, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toronto, Dalla Lana Sch Publ Hlth, Toronto, ON M5G 2M9, CanadaHong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China