Uncertainty Informed Optimal Resource Allocation with Gaussian Process based Bayesian Inference

被引:0
作者
Gupta, Samarth [1 ]
Amin, Saurabh [2 ]
机构
[1] Amazon, Seattle, WA 98109 USA
[2] MIT, Cambridge, MA 02139 USA
来源
6TH ANNUAL LEARNING FOR DYNAMICS & CONTROL CONFERENCE | 2024年 / 242卷
关键词
non-linear epidemiological models; ODEs; Parameter estimation; Bayesian Inference; Gaussian Processes; Gradient matching; resource allocation; PARAMETER-ESTIMATION; DIFFERENTIAL-EQUATIONS; SPREADING PROCESSES; SCENARIO REDUCTION; MODEL; INTEGRATION; EPIDEMICS; SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We focus on the problem of uncertainty informed allocation of medical resources (vaccines) to heterogeneous populations for managing epidemic spread. We tackle two related questions: (1) For a compartmental ordinary differential equation (ODE) model of epidemic spread, how can we estimate and integrate parameter uncertainty into resource allocation decisions? (2) How can we computationally handle both nonlinear ODE constraints and parameter uncertainties for a generic stochastic optimization problem for resource allocation? To the best of our knowledge current literature does not fully resolve these questions. Here, we develop a data-driven approach to represent parameter uncertainty accurately and tractably in a novel stochastic optimization problem formulation. We first generate a tractable scenario set by estimating the distribution on ODE model parameters using Bayesian inference with Gaussian processes. Next, we develop a parallelized solution algorithm that accounts for scenario-dependent nonlinear ODE constraints. Our computational experiments on two different non-linear ODE models (SEIR and SEPIHR) indicate that accounting for uncertainty in key epidemiological parameters can improve the efficacy of time-critical allocation decisions by 4-8%. This improvement can be attributed to data-driven and optimal (strategic) nature of vaccine allocations.
引用
收藏
页码:796 / 812
页数:17
相关论文
共 70 条
  • [1] Acemoglu D, 2021, Arxiv, DOI arXiv:2101.00773
  • [2] A comparison of approximate versus exact techniques for Bayesian parameter inference in nonlinear ordinary differential equation models
    Alahmadi, Amani A.
    Flegg, Jennifer A.
    Cochrane, Davis G.
    Drovandi, Christopher C.
    Keith, Jonathan M.
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2020, 7 (03):
  • [3] Angelopoulos A. N., 2020, Harvard Data Science Review, DOI DOI 10.1162/99608F92.F01EE285
  • [4] Becker N G., 1975, Bulletin of the International Statistics Institute, V46, P478
  • [5] Bertsimas D, 2020, PREPRINT, DOI [DOI 10.1101/2020.11.17.20233213, 10.1101/2020.11.17.20233213, DOI 10.1101/2020.11.17.20233213V1]
  • [6] Controlling Epidemic Spread: Reducing Economic Losses with Targeted Closures
    Birge, John R.
    Candogan, Ozan
    Feng, Yiding
    [J]. MANAGEMENT SCIENCE, 2022, 68 (05) : 3175 - 3195
  • [7] Brauer F, 2008, LECT NOTES MATH, V1945, P19
  • [8] Brauer Fred, 2017, Infect Dis Model, V2, P113, DOI 10.1016/j.idm.2017.02.001
  • [9] BROGGER S, 1967, AM REV RESPIR DIS, V95, P419
  • [10] Calderhead B., 2008, Advances in Neural Information Processing Systems, V21