Accelerating the impact of artificial intelligence in mental healthcare through implementation science

被引:9
|
作者
Nilsen, Per [1 ]
Svedberg, Petra [2 ]
Nygren, Jens [2 ]
Frideros, Micael [1 ]
Johansson, Jan [3 ]
Schueller, Stephen [4 ]
机构
[1] Linkoping Univ, Uvebergsv 47, S-58183 Linkoping, Sweden
[2] Halmstad Univ, Sch Hlth & Welf, Halmstad, Sweden
[3] Reg Halland, Halmstad, Sweden
[4] Univ Calif Irvine, Psychol Sci, Irvine, CA USA
来源
IMPLEMENTATION RESEARCH AND PRACTICE | 2022年 / 3卷
关键词
mental health services; implementation; artificial intelligence; MEDICINE;
D O I
10.1177/26334895221112033
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background The implementation of artificial intelligence (AI) in mental healthcare offers a potential solution to some of the problems associated with the availability, attractiveness, and accessibility of mental healthcare services. However, there are many knowledge gaps regarding how to implement and best use AI to add value to mental healthcare services, providers, and consumers. The aim of this paper is to identify challenges and opportunities for AI use in mental healthcare and to describe key insights from implementation science of potential relevance to understand and facilitate AI implementation in mental healthcare.Methods The paper is based on a selective review of articles concerning AI in mental healthcare and implementation science.Results Research in implementation science has established the importance of considering and planning for implementation from the start, the progression of implementation through different stages, and the appreciation of determinants at multiple levels. Determinant frameworks and implementation theories have been developed to understand and explain how different determinants impact on implementation. AI research should explore the relevance of these determinants for AI implementation. Implementation strategies to support AI implementation must address determinants specific to AI implementation in mental health. There might also be a need to develop new theoretical approaches or augment and recontextualize existing ones. Implementation outcomes may have to be adapted to be relevant in an AI implementation context.Conclusion Knowledge derived from implementation science could provide an important starting point for research on implementation of AI in mental healthcare. This field has generated many insights and provides a broad range of theories, frameworks, and concepts that are likely relevant for this research. However, when taking advantage of the existing knowledge basis, it is important to also be explorative and study AI implementation in health and mental healthcare as a new phenomenon in its own right since implementing AI may differ in various ways from implementing evidence-based practices in terms of what implementation determinants, strategies, and outcomes are most relevant. Plain Language Summary: The implementation of artificial intelligence (AI) in mental healthcare offers a potential solution to some of the problems associated with the availability, attractiveness, and accessibility of mental healthcare services. However, there are many knowledge gaps concerning how to implement and best use AI to add value to mental healthcare services, providers, and consumers. This paper is based on a selective review of articles concerning AI in mental healthcare and implementation science, with the aim to identify challenges and opportunities for the use of AI in mental healthcare and describe key insights from implementation science of potential relevance to understand and facilitate AI implementation in mental healthcare. AI offers opportunities for identifying the patients most in need of care or the interventions that might be most appropriate for a given population or individual. AI also offers opportunities for supporting a more reliable diagnosis of psychiatric disorders and ongoing monitoring and tailoring during the course of treatment. However, AI implementation challenges exist at organizational/policy, individual, and technical levels, making it relevant to draw on implementation science knowledge for understanding and facilitating implementation of AI in mental healthcare. Knowledge derived from implementation science could provide an important starting point for research on AI implementation in mental healthcare. This field has generated many insights and provides a broad range of theories, frameworks, and concepts that are likely relevant for this research.Conclusion Knowledge derived from implementation science could provide an important starting point for research on implementation of AI in mental healthcare. This field has generated many insights and provides a broad range of theories, frameworks, and concepts that are likely relevant for this research. However, when taking advantage of the existing knowledge basis, it is important to also be explorative and study AI implementation in health and mental healthcare as a new phenomenon in its own right since implementing AI may differ in various ways from implementing evidence-based practices in terms of what implementation determinants, strategies, and outcomes are most relevant. Plain Language Summary: The implementation of artificial intelligence (AI) in mental healthcare offers a potential solution to some of the problems associated with the availability, attractiveness, and accessibility of mental healthcare services. However, there are many knowledge gaps concerning how to implement and best use AI to add value to mental healthcare services, providers, and consumers. This paper is based on a selective review of articles concerning AI in mental healthcare and implementation science, with the aim to identify challenges and opportunities for the use of AI in mental healthcare and describe key insights from implementation science of potential relevance to understand and facilitate AI implementation in mental healthcare. AI offers opportunities for identifying the patients most in need of care or the interventions that might be most appropriate for a given population or individual. AI also offers opportunities for supporting a more reliable diagnosis of psychiatric disorders and ongoing monitoring and tailoring during the course of treatment. However, AI implementation challenges exist at organizational/policy, individual, and technical levels, making it relevant to draw on implementation science knowledge for understanding and facilitating implementation of AI in mental healthcare. Knowledge derived from implementation science could provide an important starting point for research on AI implementation in mental healthcare. This field has generated many insights and provides a broad range of theories, frameworks, and concepts that are likely relevant for this research.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Leveraging artificial intelligence to advance implementation science: potential opportunities and cautions
    Katy E. Trinkley
    Ruopeng An
    Anna M. Maw
    Russell E. Glasgow
    Ross C. Brownson
    Implementation Science, 19
  • [32] Artificial Intelligence Pathologist: The use of Artificial Intelligence in Digital Healthcare
    Kaddour, Asmaa Ben Ali
    Abdulaziz, Nidhal
    2021 IEEE GLOBAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INTERNET OF THINGS (GCAIOT), 2021, : 31 - 36
  • [33] Fairness of artificial intelligence in healthcare: review and recommendations
    Ueda, Daiju
    Kakinuma, Taichi
    Fujita, Shohei
    Kamagata, Koji
    Fushimi, Yasutaka
    Ito, Rintaro
    Matsui, Yusuke
    Nozaki, Taiki
    Nakaura, Takeshi
    Fujima, Noriyuki
    Tatsugami, Fuminari
    Yanagawa, Masahiro
    Hirata, Kenji
    Yamada, Akira
    Tsuboyama, Takahiro
    Kawamura, Mariko
    Fujioka, Tomoyuki
    Naganawa, Shinji
    JAPANESE JOURNAL OF RADIOLOGY, 2024, 42 (01) : 3 - 15
  • [34] Rise of the Machines - Artificial Intelligence in Healthcare Epidemiology
    Non, Lemuel R.
    Marra, Alexandre R.
    Ince, Dilek
    CURRENT INFECTIOUS DISEASE REPORTS, 2025, 27 (01)
  • [35] Fairness of artificial intelligence in healthcare: review and recommendations
    Daiju Ueda
    Taichi Kakinuma
    Shohei Fujita
    Koji Kamagata
    Yasutaka Fushimi
    Rintaro Ito
    Yusuke Matsui
    Taiki Nozaki
    Takeshi Nakaura
    Noriyuki Fujima
    Fuminari Tatsugami
    Masahiro Yanagawa
    Kenji Hirata
    Akira Yamada
    Takahiro Tsuboyama
    Mariko Kawamura
    Tomoyuki Fujioka
    Shinji Naganawa
    Japanese Journal of Radiology, 2024, 42 : 3 - 15
  • [36] Leveraging artificial intelligence to advance implementation science: potential opportunities and cautions
    Trinkley, Katy E.
    An, Ruopeng
    Maw, Anna M.
    Glasgow, Russell E.
    Brownson, Ross C.
    IMPLEMENTATION SCIENCE, 2024, 19 (01)
  • [37] Implementation of Artificial Intelligence Applications in Australian Healthcare Organisations: Environmental Scan Findings
    Janssen, Anna B.
    Kavisha, Shah
    Johnson, Alison
    Marinic, Anna
    Teede, Helena
    Shaw, Tim
    MEDINFO 2023 - THE FUTURE IS ACCESSIBLE, 2024, 310 : 1136 - 1140
  • [38] Roles and Competencies of Doctors in Artificial Intelligence Implementation: Qualitative Analysis Through Physician Interviews
    Tanaka, Masashi
    Matsumura, Shinji
    Bito, Seiji
    JMIR FORMATIVE RESEARCH, 2023, 7
  • [39] Implementation of Deep Learning Techniques Based Artificial Intelligence for Healthcare Data Records
    Rajagopal, S.
    Balaji, M. Sundar Prakash
    Sivakumar, B.
    Thenmozhi, P.
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2024, 19 (05) : 3471 - 3484
  • [40] Artificial Intelligence for Healthcare in Africa
    Owoyemi, Ayomide
    Owoyemi, Joshua
    Osiyemi, Adenekan
    Boyd, Andy
    FRONTIERS IN DIGITAL HEALTH, 2020, 2