Anisotropic Janus monolayers BXY (X = P, as or Sb, Y = S, Se or Te) for photocatalytic water splitting: A first-principles study

被引:0
|
作者
Zhao, Yanfu [1 ,2 ]
Zhang, Bofeng [3 ]
Lin, Jiahe [1 ]
机构
[1] Jimei Univ, Sch Sci, Xiamen 361021, Peoples R China
[2] Fujian Normal Univ, Coll Photon & Elect Engn, Dept Photoelect Informat Engn, Fuzhou 350007, Peoples R China
[3] Xiamen Univ, Coll Chem & Chem Engn, Dept Chem, Xiamen 361005, Peoples R China
关键词
Two dimensional; Anisotropic; Janus; Photocatalytic water splitting; First-principles; MOLECULAR-DYNAMICS; SEMICONDUCTORS; ENERGY;
D O I
10.1016/j.solener.2025.113320
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Recent advancements in two-dimensional materials have unveiled their promise in various applications, particularly in the realms of optics, electronics, and optoelectronics. This study presents a theoretical exploration of a novel class of anisotropic Janus monolayer materials, BXY (with X being P, As, or Sb, and Y being S, Se, or Te), utilizing first-principles density functional theory. Our stability analysis reveal that the eight of these monolayers exhibit high stability, with the exception of BSbS. Through the application of the HSE06 hybrid functional, We've identified that these stable monolayers fall into the category of semiconductors with an indirect bandgap, and their band gaps span a range between 0.35 and 3.00 eV. Except for BSbSe, all other semiconductors fulfill the band edges criteria in photocatalytic water splitting. Additionally, we have observed that these materials possess anisotropic and superior carrier mobility and optical absorption properties, attributed to their distinct anisotropic structure. As for the solar-to-hydrogen (STH) efficiency, five of these monolayers exhibit STH efficiencies that go beyond the 10 %, with BAsS and BSbTe reaching notable values of 33.93 % and 36.11 %, respectively. Furthermore, the synergistic effects of photoexcitation and electrocatalysis in these monolayers facilitate the overall water splitting process. Additionally, we explored how uniaxial and biaxial strain impact the electronic, optical absorption, OER, and HER activity, as well as the STH efficiency, of these stable monolayers. We found that a small range of uniaxial strain (-2% to 2 %) can enhance their STH efficiency. In our study, we concluded that BSbTe is the most suitable material for photocatalytic water splitting.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Electronic, optical and photocatalytic water splitting properties of two-dimensional monolayers of Janus Cd2XY (X = S, Se; Y = Se, Te; X ≠ Y): a first-principles study
    Wang, Heng
    Xu, Furong
    Dai, Songli
    Xiao, Shiyu
    Yu, Zhigang
    Tian, Zean
    PHYSICA SCRIPTA, 2025, 100 (03)
  • [2] XYZ2 (X/Y = Ge, Pb, Sn; Z = Se, S, Te) two-dimensional Janus monolayers for photocatalytic water splitting: A first-principles study
    Yu, Zhigang
    Xu, Furong
    Dai, Songli
    Wang, Heng
    Xiao, Shiyu
    Tian, Zean
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 709
  • [3] Hexagonal Janus Zn2XY (X=S, Se; Y--Se, Te; X/=Y) monolayers: A high-performance photocatalyst for water splitting
    Tan, Xinzhu
    Chen, Qian
    Liang, Yongchao
    Tian, Zean
    Gao, Tinghong
    Xie, Quan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 51 : 222 - 230
  • [4] Two-dimensional Janus monolayers Al2XYZ (X/Y/Z = S, Se, Te, X ≠ Y ≠ Z): first-principles insight into the photocatalytic and highly adjustable piezoelectric properties
    Qi, Chenchen
    Yan, Cuixia
    Li, Qiuyang
    Yang, Ting
    Qiu, Shi
    Cai, Jinming
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (09) : 3262 - 3274
  • [5] Structural, electronic, magnetic, and optical properties of new TiXY (X = F and Cl; Y = S, Se and Te) Janus monolayers: A first-principles study
    Hoat, D. M.
    Nguyen, Duy Khanh
    On, Vo Van
    Rivas-Silva, J. F.
    Cocoletzi, Gregorio H.
    OPTIK, 2021, 244
  • [6] Janus β-Te2X (X = S, Se) monolayers for efficient excitonic solar cells and photocatalytic water splitting
    Singh, Jaspreet
    Kumar, Ashok
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (03) : 1173 - 1183
  • [7] Photocatalytic water splitting performance of ScTeI monolayer with Janus structure: A first-principles study
    Lin, Xin
    Wan, Rundong
    Zhang, Zhengfu
    Li, Mengnie
    Tian, Guocai
    MATERIALS TODAY COMMUNICATIONS, 2025, 45
  • [8] Janus monolayer SiXY (X = P, as and Sb, Y = N, P, As) for photocatalytic water splitting
    Zhao, Yanfu
    Zhang, Bofeng
    Lin, Jiahe
    APPLIED SURFACE SCIENCE, 2023, 621
  • [9] Tuning the electronic and piezoelectric properties of Janus Ga2XY (X/Y=S, Se, Te) monolayers: A first-principles calculation
    Yao, Shida
    Ma, Xinguo
    Huang, Chuyun
    Guo, Youyou
    Ren, Yijing
    Ma, Nan
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2024, 178
  • [10] Structural and Electronic Properties of Two-Dimensional Janus XGeSiY (X, Y = P, As, Sb, and Bi) Monolayers: A First-Principles Study
    Mao, Yuliang
    Yang, Shanlin
    Li, Yuxuan
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (08) : 4330 - 4343