Learning to Enhance Aperture Phasor Field for Non-Line-of-Sight Imaging

被引:0
|
作者
Cho, In [1 ]
Shim, Hyunbo [1 ]
Kim, Seon Joo [1 ]
机构
[1] Yonsei Univ, Seoul, South Korea
来源
COMPUTER VISION-ECCV 2024, PT XLIII | 2025年 / 15101卷
关键词
Non-line-of-sight imaging; Deep learning;
D O I
10.1007/978-3-031-72775-7_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper aims to facilitate more practical NLOS imaging by reducing the number of samplings and scan areas. To this end, we introduce a phasor-based enhancement network that is capable of predicting clean and full measurements from noisy partial observations. We leverage a denoising autoencoder scheme to acquire rich and noise-robust representations in the measurement space. Through this pipeline, our enhancement network is trained to accurately reconstruct complete measurements from their corrupted and partial counterparts. However, we observe that the naive application of denoising often yields degraded and over-smoothed results, caused by unnecessary and spurious frequency signals present in measurements. To address this issue, we introduce a phasor-based pipeline designed to limit the spectrum of our network to the frequency range of interests, where the majority of informative signals are detected. The phasor wavefronts at the aperture, which are band-limited signals, are employed as inputs and outputs of the network, guiding our network to learn from the frequency range of interests and discard unnecessary information. The experimental results in more practical acquisition scenarios demonstrate that we can look around the corners with 16x or 64x fewer samplings and 4x smaller apertures. Our code is available at https://github.com/join16/LEAP.
引用
收藏
页码:72 / 89
页数:18
相关论文
共 50 条
  • [1] Non-Line-of-Sight Imaging Through Deep Learning
    Yu Tingyi
    Qiao Mu
    Liu Honglin
    Han Shensheng
    ACTA OPTICA SINICA, 2019, 39 (07)
  • [2] Non-Line-of-Sight Imaging Through Deep Learning
    Yu T.
    Qiao M.
    Liu H.
    Han S.
    Guangxue Xuebao/Acta Optica Sinica, 2019, 39 (07):
  • [3] Confocal Non-line-of-sight Imaging
    O'Toole, Matthew
    Lindell, David B.
    Wetzstein, Gordon
    SIGGRAPH'18: ACM SIGGRAPH 2018 TALKS, 2018,
  • [4] Thermal Non-Line-of-Sight Imaging
    Maeda, Tomohiro
    Wang, Yiqin
    Raskar, Ramesh
    Kadambi, Achuta
    2019 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL PHOTOGRAPHY (ICCP), 2019,
  • [5] Non-line-of-sight imaging and location determination using deep learning
    Wang, Zhiyuan
    Huang, Huiling
    Li, Haoran
    Chen, Ziyang
    Han, Jun
    Pu, Jixiong
    OPTICS AND LASERS IN ENGINEERING, 2023, 169
  • [6] Influence of Target Surface BRDF on Non-Line-of-Sight Imaging
    Yang, Yufeng
    Yang, Kailei
    Zhang, Ao
    JOURNAL OF IMAGING, 2024, 10 (11)
  • [7] Learned Feature Embeddings for Non-Line-of-Sight Imaging and Recognition
    Chen, Wenzheng
    Wei, Fangyin
    Kutulakos, Kiriakos N.
    Rusinkiewicz, Szymon
    Heide, Felix
    ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (06):
  • [8] Deep Non-Line-of-Sight Imaging Using Echolocation
    Jang, Seungwoo
    Shin, Ui-Hyeon
    Kim, Kwangsu
    SENSORS, 2022, 22 (21)
  • [9] Non-line-of-sight imaging over 1.43 km
    Wu, Cheng
    Liu, Jianjiang
    Huang, Xin
    Li, Zheng-Ping
    Yu, Chao
    Ye, Jun-Tian
    Zhang, Jun
    Zhang, Qiang
    Dou, Xiankang
    Goyal, Vivek K.
    Xu, Feihu
    Pan, Jian-Wei
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (10)
  • [10] Non-line-of-sight imaging with adaptive artifact cancellation
    Zhou, Hongyuan
    Chen, Ziyang
    Qiu, Jumin
    Zhong, Sijia
    Zhang, Dejian
    Wang, Tongbiao
    Liu, Qiegen
    Yu, Tianbao
    OPTICS AND LASER TECHNOLOGY, 2025, 182