Extraordinary strength-ductility combination in bidirectional heterostructured CoCrFeMnNi high-entropy alloy

被引:0
作者
Wang, Chengchi [1 ]
Cao, Yu [1 ]
Li, Jingge [1 ]
Zhu, Dehua [1 ]
Chen, Leiqing [1 ]
Sun, Jianxiang [1 ]
Chen, Jie [1 ]
机构
[1] Wenzhou Univ, Coll Mech & Elect Engn, Wenzhou 325035, Zhejiang, Peoples R China
来源
CELL REPORTS PHYSICAL SCIENCE | 2024年 / 5卷 / 12期
关键词
STACKING-FAULT ENERGY; GRAIN-SIZE; MICROSTRUCTURE EVOLUTION; MECHANICAL-PROPERTIES; TENSILE PROPERTIES; ENHANCED STRENGTH; STAINLESS-STEEL; BACK STRESS; TRADE-OFF; DEFORMATION;
D O I
10.1016/j.xcrp.2024.102308
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Despite abundant types of heterogeneous structures, no optimal strength-ductility combination of high-entropy alloys has been achieved yet; designing heterogeneous structures to stimulate the greater potential of high-entropy alloys in terms of mechanical properties still needs to be explored. Here, we prepare a bidirectional heterostructured CoCrFeMnNi high-entropy alloy using partial recrystallization annealing and subsequent laser surface heat treatment. The average grain size exhibits a gradient distribution along the depth, while each gradient layer maintains a partially recrystallized microstructure consisting of coarse and ultrafine grains, accompanied by a superior yield strength of '979 MPa and a considerable uniform elongation of similar to 15.1%. The research indicates that the excellent strength-ductility combination of the bidirectional heterogeneous structure mainly originates from the coupling action of remarkable soft-hard layer strength differences and abundant geometrically necessary dislocation storage interfaces, as well as the blunting effect of dislocations, stacking faults, and nanotwins on cracks.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] C and N doping in high-entropy alloys: A pathway to achieve desired strength-ductility synergy
    He, M. Y.
    Shen, Y. F.
    Jia, N.
    Liaw, P. K.
    APPLIED MATERIALS TODAY, 2021, 25
  • [42] Role of Cu addition in enhancing strength-ductility synergy in transforming high entropy alloy
    Agrawal, Priyanka
    Gupta, Sanya
    Shukla, Shivakant
    Nene, Saurabh S.
    Thapliyal, Saket
    Toll, Michael P.
    Mishra, Rajiv S.
    MATERIALS & DESIGN, 2022, 215
  • [43] Precipitation and heterogeneous strengthened CoCrNi-based medium entropy alloy with excellent strength-ductility combination from room to cryogenic temperatures
    Xie Yu
    Zhao PengCheng
    Tong YongGang
    Tan JianPing
    Sun BinHan
    Cui Yan
    Wang RunZi
    Zhang XianCheng
    Tu ShanTung
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2022, 65 (08) : 1780 - 1797
  • [44] Ultrahigh cryogenic strength and exceptional ductility in ultrafine-grained CoCrFeMnNi high-entropy alloy with fully recrystallized structure
    Sun, S. J.
    Tian, Y. Z.
    An, X. H.
    Lin, H. R.
    Wang, J. W.
    Zhang, Z. F.
    MATERIALS TODAY NANO, 2018, 4 : 46 - 53
  • [45] Aged metastable high-entropy alloys with heterogeneous lamella structure for superior strength-ductility synergy
    Zhang, Cheng
    Zhu, Chaoyi
    Cao, Penghui
    Wang, Xin
    Ye, Fan
    Kaufmann, Kevin
    Casalena, Lee
    MacDonald, Benjamin E.
    Pan, Xiaoqing
    Vecchio, Kenneth
    Lavernia, Enrique J.
    ACTA MATERIALIA, 2020, 199 : 602 - 612
  • [46] Exceptional strength-ductility combination of heterostructured stainless steel for cryogenic applications
    Romero-Resendiz, Liliana
    Huang, Yi
    Knowles, Alexander J.
    Kelleher, Joe
    Lee, Tung Lik
    Mousavi, Tayebeh
    Naeem, Muhammad
    SCRIPTA MATERIALIA, 2025, 258
  • [47] The role of trace Nb in enhancing the strength-ductility combination of a Ni2CoCrFe-based high-entropy alloy via thermo-mechanical processing
    Man, Jiale
    Wu, Baolin
    Duan, Guosheng
    Zhang, Lu
    Wan, Gang
    Zhang, Li
    Jin, Wenhan
    Liu, Yandong
    Esling, Claude
    MATERIALS CHARACTERIZATION, 2023, 200
  • [48] Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening
    Huang, Dong
    Zhuang, Yanxin
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 108 : 125 - 132
  • [49] Enhanced Strength-ductility of FeMnNiCo High-entropy Alloy with Incorporation of In-situ TiC Reinforcements
    Yuanbo Deng
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2025, 40 (3): : 887 - 894
  • [50] Dual-interstitials promoted multiple mechanisms enhance strength-ductility synergy of an equiatomic high-entropy alloy
    Hu, Yuefeng
    Gan, Kefu
    Zhang, Yong
    Yan, Dingshun
    Yang, Qiankun
    Zhu, Shuya
    Li, Zhiming
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 968