MULTIPLE-TERM IMPROVEMENTS OF JENSEN'S INEQUALITY FOR ( p , h ) -CONVEX AND ( p , h ) -LOG CONVEX FUNCTIONS

被引:0
|
作者
Huy, Duong Quoc [1 ]
Gourty, Abdelmajid [2 ]
Ighachane, Mohamed Amine [3 ]
Boumazgour, Mohamed [4 ]
机构
[1] Tay Nguyen Univ, Dept Math, 567 Le Duan, Buon Ma Thuot, Dak Lak, Vietnam
[2] Ibn Zohr Univ, Fac Sci Agadir FSA, Math & Applicat Lab, Agadir, Morocco
[3] Chouaib Doukkali Univ, Higher Sch Educ & Training El Jadida, Sci & Technol Team ESTE, El Jadida, Morocco
[4] Fac Sci Agadir FSA, Math & Applicat Lab, Agadir, Morocco
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2024年 / 18卷 / 03期
关键词
( p; h )-convex function; h )-log-convex functions; weak sub-majorization; Jensen's inequality; scalar means; H)-CONVEX FUNCTIONS; REFINEMENTS; (P;
D O I
10.7153/jmi-2024-18-61
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present several new multiple-term improvements of Jensen's inequality for ( p , h )-convex and ( p , h )-log convex functions. As applications of our results, we present new bounds by employing means and Ho<spacing diaeresis>lder type inequalities for the symmetric norms for i-measurable operators. We make links between our findings and a number of well-known discoveries in the literature.
引用
收藏
页码:1099 / 1121
页数:23
相关论文
共 48 条
  • [41] Improvements to Slater's inequality and their applications via functions whose fourth-order derivatives are convex
    Sohail, Asadullah
    Khan, Muhammad Adil
    Ullah, Hidayat
    Alnowibet, Khalid A.
    Li, Yi-Xia
    Chu, Yu-Ming
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2025, 33 (01):
  • [42] A NOTE ON CHARACTERIZATION OF h-CONVEX FUNCTIONS VIA HERMITE-HADAMARD TYPE INEQUALITY
    Delavar, M. Rostamian
    Dragomir, S. S.
    De La Sen, M.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2019, 8 (02): : 28 - 36
  • [43] Generalized pseudo-integral Jensen's inequality for ((⊕1, ⊗1), (⊕2, ⊗2))-pseudo-convex functions
    Zhang, Deli
    Pap, Endre
    FUZZY SETS AND SYSTEMS, 2022, 430 : 126 - 143
  • [44] New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense
    Liu, Peide
    Khan, Muhammad Bilal
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (01) : 413 - 427
  • [45] On Hermite-Hadamard type inequalities of coordinated (p1, h1)-(p2, h2)-convex functions via Katugampola Fractional Integrals
    Raees, Muhammad
    Anwar, Matloob
    FILOMAT, 2019, 33 (15) : 4785 - 4802
  • [46] Jensen-Mercer and Hermite-Hadamard-Mercer Type Inequalities for GA-h-Convex Functions and Its Subclasses with Applications
    Fahad, Asfand
    Ayesha
    Wang, Yuanheng
    Butt, Saad Ihsaan
    MATHEMATICS, 2023, 11 (02)
  • [47] On some new Hermite-Hadamard and Ostrowski type inequalities for s-convex functions in (p, q)-calculus with applications
    You, Xue-Xiao
    Ali, Muhammad Aamir
    Kalsoom, Humaira
    Soontharanon, Jarunee
    Sitthiwirattham, Thanin
    OPEN MATHEMATICS, 2022, 20 (01): : 707 - 723
  • [48] New Hermite–Hadamard and Jensen inequalities for log-s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}-convex fuzzy-interval-valued functions in the second sense
    Peide Liu
    Muhammad Bilal Khan
    Muhammad Aslam Noor
    Khalida Inayat Noor
    Complex & Intelligent Systems, 2022, 8 (1) : 413 - 427