MULTIPLE-TERM IMPROVEMENTS OF JENSEN'S INEQUALITY FOR ( p , h ) -CONVEX AND ( p , h ) -LOG CONVEX FUNCTIONS

被引:0
|
作者
Huy, Duong Quoc [1 ]
Gourty, Abdelmajid [2 ]
Ighachane, Mohamed Amine [3 ]
Boumazgour, Mohamed [4 ]
机构
[1] Tay Nguyen Univ, Dept Math, 567 Le Duan, Buon Ma Thuot, Dak Lak, Vietnam
[2] Ibn Zohr Univ, Fac Sci Agadir FSA, Math & Applicat Lab, Agadir, Morocco
[3] Chouaib Doukkali Univ, Higher Sch Educ & Training El Jadida, Sci & Technol Team ESTE, El Jadida, Morocco
[4] Fac Sci Agadir FSA, Math & Applicat Lab, Agadir, Morocco
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2024年 / 18卷 / 03期
关键词
( p; h )-convex function; h )-log-convex functions; weak sub-majorization; Jensen's inequality; scalar means; H)-CONVEX FUNCTIONS; REFINEMENTS; (P;
D O I
10.7153/jmi-2024-18-61
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present several new multiple-term improvements of Jensen's inequality for ( p , h )-convex and ( p , h )-log convex functions. As applications of our results, we present new bounds by employing means and Ho<spacing diaeresis>lder type inequalities for the symmetric norms for i-measurable operators. We make links between our findings and a number of well-known discoveries in the literature.
引用
收藏
页码:1099 / 1121
页数:23
相关论文
共 47 条
  • [21] Refinements of Jensen's inequality of Mercer's type for operator convex functions
    Matkovic, A.
    Pecaric, J.
    Peric, I.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2008, 11 (01): : 113 - 126
  • [22] ON ( p,φh)-CONVEX FUNCTION AND ITS APPLICATIONS
    SARIKAYA, M. E. H. M. E. T. Z. E. K. I.
    OGULMUS, H. A. T. I. C. E.
    ERTUGRAL, F. A. T. M. A.
    MISKOLC MATHEMATICAL NOTES, 2022, 23 (01) : 417 - 427
  • [23] Improvements of Jensen's inequality and its converse for strongly convex functions with applications to strongly f-divergences
    Bradanovic, Slavica Ivelic
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (02)
  • [24] New Hermite–Hadamard and Jensen Inequalities for Log-h-Convex Fuzzy-Interval-Valued Functions
    Muhammad Bilal Khan
    Lazim Abdullah
    Muhammad Aslam Noor
    Khalida Inayat Noor
    International Journal of Computational Intelligence Systems, 14
  • [25] SUPERADDITIVITY OF SOME FUNCTIONALS ASSOCIATED WITH JENSEN'S INEQUALITY FOR CONVEX FUNCTIONS ON LINEAR SPACES WITH APPLICATIONS
    Dragomir, S. S.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 82 (01) : 44 - 61
  • [26] The Jensen's inequality and functional form of Jensen's in-equality for 3-convex functions at a point
    Chu, Yu Ming
    Baloch, Imran Abbas
    Ul Haq, Absar
    De La Sen, Manuel
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 22 (02): : 131 - 141
  • [27] Fekete-Szego inequality for classes of (p, q)-Starlike and (p, q)-convex functions
    Srivastava, H. M.
    Raza, Nusrat
    AbuJarad, Eman S. A.
    Srivastava, Gautam
    AbuJarad, Mohammed H.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3563 - 3584
  • [28] New Hermite-Hadamard and Jensen Inequalities for Log-h-Convex Fuzzy-Interval-Valued Functions
    Khan, Muhammad Bilal
    Abdullah, Lazim
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2021, 14 (01)
  • [29] Jensen-Mercer Type Inequalities for Operator h-Convex Functions
    Abbasi, Mostafa
    Morassaei, Ali
    Mirzapour, Farzollah
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (05) : 2441 - 2462
  • [30] On the Jensen's inequality for convex functions on the co-ordinates in a rectangle from the plane
    Bakula, M. Klaricic
    Pecaric, J.
    TAIWANESE JOURNAL OF MATHEMATICS, 2006, 10 (05): : 1271 - 1292