MULTIPLE-TERM IMPROVEMENTS OF JENSEN'S INEQUALITY FOR ( p , h ) -CONVEX AND ( p , h ) -LOG CONVEX FUNCTIONS

被引:0
|
作者
Huy, Duong Quoc [1 ]
Gourty, Abdelmajid [2 ]
Ighachane, Mohamed Amine [3 ]
Boumazgour, Mohamed [4 ]
机构
[1] Tay Nguyen Univ, Dept Math, 567 Le Duan, Buon Ma Thuot, Dak Lak, Vietnam
[2] Ibn Zohr Univ, Fac Sci Agadir FSA, Math & Applicat Lab, Agadir, Morocco
[3] Chouaib Doukkali Univ, Higher Sch Educ & Training El Jadida, Sci & Technol Team ESTE, El Jadida, Morocco
[4] Fac Sci Agadir FSA, Math & Applicat Lab, Agadir, Morocco
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2024年 / 18卷 / 03期
关键词
( p; h )-convex function; h )-log-convex functions; weak sub-majorization; Jensen's inequality; scalar means; H)-CONVEX FUNCTIONS; REFINEMENTS; (P;
D O I
10.7153/jmi-2024-18-61
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present several new multiple-term improvements of Jensen's inequality for ( p , h )-convex and ( p , h )-log convex functions. As applications of our results, we present new bounds by employing means and Ho<spacing diaeresis>lder type inequalities for the symmetric norms for i-measurable operators. We make links between our findings and a number of well-known discoveries in the literature.
引用
收藏
页码:1099 / 1121
页数:23
相关论文
共 47 条
  • [1] Extrapolation of (p, h )- convex functions
    Taki, Zakaria
    Ighachane, Mohamed Amine
    Huy, Duong Quoc
    FILOMAT, 2024, 38 (25) : 8971 - 8985
  • [2] Improved Jensen's type inequality for (p, h)-convex functions via weak sub-majorization
    Ighachane, Mohamed Amine
    Bouchangour, Mohammed
    FILOMAT, 2024, 38 (05) : 1793 - 1806
  • [3] ON STRONGLY (p, h)-CONVEX FUNCTIONS
    Awan, Muhammad Uzair
    Noor, Muhammad Aslam
    Set, Erhan
    Mihai, Marcela, V
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 10 (02): : 145 - 153
  • [4] Some inequalities for operator (p,h)-convex functions
    Trung Hoa Dinh
    Khue Thi Bich Vo
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (03): : 580 - 592
  • [5] New inequalities for (p, h)-convex functions for τ-measurable operators
    Ighachane, Mohamed Amine
    Bouchangour, Mohammed
    FILOMAT, 2023, 37 (16) : 5259 - 5271
  • [6] Some Quantum Integral Inequalities for (p, h)-Convex Functions
    Kantalo, Jirawat
    Wannalookkhee, Fongchan
    Nonlaopon, Kamsing
    Budak, Huseyin
    MATHEMATICS, 2023, 11 (05)
  • [7] HERMITE-HADAMARD TYPE INEQUALITIES FOR OPERATOR (p, h)-CONVEX FUNCTIONS
    Hao, Zhiwei
    Li, Libo
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (04): : 1269 - 1284
  • [8] Around Jensen's inequality for strongly convex functions
    Moradi, Hamid Reza
    Omidvar, Mohsen Erfanian
    Khan, Muhammad Adil
    Nikodem, Kazimierz
    AEQUATIONES MATHEMATICAE, 2018, 92 (01) : 25 - 37
  • [9] Jensen's inequality for GG-convex functions
    Zabandan, G.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2019, 10 (01): : 1 - 7
  • [10] Around Jensen’s inequality for strongly convex functions
    Hamid Reza Moradi
    Mohsen Erfanian Omidvar
    Muhammad Adil Khan
    Kazimierz Nikodem
    Aequationes mathematicae, 2018, 92 : 25 - 37