Engineering Quantum Error Correction Codes Using Evolutionary Algorithms

被引:0
|
作者
Webster, Mark A. [1 ]
Browne, Dan E. [1 ]
机构
[1] UCL, Dept Phys & Astron, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Codes; Qubit; Generators; Vectors; Evolutionary computation; Error correction codes; Computational modeling; Standards; Error analysis; Computers; Evolutionary algorithms; quantum error correction; stabilizer codes;
D O I
10.1109/TQE.2025.3538934
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Quantum error correction and the use of quantum error correction codes are likely to be essential for the realization of practical quantum computing. Because the error models of quantum devices vary widely, quantum codes that are tailored for a particular error model may have much better performance. In this work, we present a novel evolutionary algorithm that searches for an optimal stabilizer code for a given error model, number of physical qubits, and number of encoded qubits. We demonstrate an efficient representation of stabilizer codes as binary strings, which allows for random generation of valid stabilizer codes as well as mutation and crossing of codes. Our algorithm finds stabilizer codes whose distance closely matches the best-known-distance codes of Grassl (2007) for n <= 20 physical qubits. We perform a search for optimal distance Calderbank-Steane-Shor codes and compare their distance to the best known codes. Finally, we show that the algorithm can be used to optimize stabilizer codes for biased error models, demonstrating a significant improvement in the undetectable error rate for [[12,1]](2) codes versus the best-known-distance code with the same parameters. As part of this work, we also introduce an evolutionary algorithm QDistEvol for finding the distance of quantum error correction codes.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Quantum error correction via codes over GF (4)
    Calderbank, AR
    Rains, EM
    Shor, PW
    Sloane, NJA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) : 1369 - 1387
  • [42] Quantum Error Correction Codes in Consumer Technology: Modeling and Analysis
    Thakur, Vikram Singh
    Kumar, Atul
    Das, Jishnu
    Dev, Kapal
    Magarini, Maurizio
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (04) : 7102 - 7111
  • [43] Topological graph states and quantum error-correction codes
    Liao, Pengcheng
    Sanders, Barry C.
    Feder, David L.
    PHYSICAL REVIEW A, 2022, 105 (04)
  • [44] Perturbative Stability and Error-Correction Thresholds of Quantum Codes
    Li, Yaodong
    O'Dea, Nicholas
    Khemani, Vedika
    PRX QUANTUM, 2025, 6 (01):
  • [45] Clustered Error Correction of Codeword-Stabilized Quantum Codes
    Li, Yunfan
    Dumer, Ilya
    Pryadko, Leonid P.
    PHYSICAL REVIEW LETTERS, 2010, 104 (19)
  • [46] Fault-tolerant error correction with efficient quantum codes
    DiVincenzo, DP
    Shor, PW
    PHYSICAL REVIEW LETTERS, 1996, 77 (15) : 3260 - 3263
  • [47] Near-Optimal Performance of Quantum Error Correction Codes
    Zheng, Guo
    He, Wenhao
    Lee, Gideon
    Jiang, Liang
    PHYSICAL REVIEW LETTERS, 2024, 132 (25)
  • [48] Quantum Error Correction via Codes over GF(2)
    Chowdhury, Arijit
    Rajan, B. Sundar
    2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 789 - 793
  • [49] Approximate quantum error correction can lead to better codes
    Leung, DW
    Nielsen, MA
    Chuang, IL
    Yamamoto, Y
    PHYSICAL REVIEW A, 1997, 56 (04): : 2567 - 2573
  • [50] Quantum error correction and quantum computation with detected-jump correcting quantum codes
    Alber, G
    Delgado, A
    Mussinger, M
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2001, 49 (10-11): : 901 - 908