Engineering Quantum Error Correction Codes Using Evolutionary Algorithms

被引:0
|
作者
Webster, Mark A. [1 ]
Browne, Dan E. [1 ]
机构
[1] UCL, Dept Phys & Astron, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Codes; Qubit; Generators; Vectors; Evolutionary computation; Error correction codes; Computational modeling; Standards; Error analysis; Computers; Evolutionary algorithms; quantum error correction; stabilizer codes;
D O I
10.1109/TQE.2025.3538934
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Quantum error correction and the use of quantum error correction codes are likely to be essential for the realization of practical quantum computing. Because the error models of quantum devices vary widely, quantum codes that are tailored for a particular error model may have much better performance. In this work, we present a novel evolutionary algorithm that searches for an optimal stabilizer code for a given error model, number of physical qubits, and number of encoded qubits. We demonstrate an efficient representation of stabilizer codes as binary strings, which allows for random generation of valid stabilizer codes as well as mutation and crossing of codes. Our algorithm finds stabilizer codes whose distance closely matches the best-known-distance codes of Grassl (2007) for n <= 20 physical qubits. We perform a search for optimal distance Calderbank-Steane-Shor codes and compare their distance to the best known codes. Finally, we show that the algorithm can be used to optimize stabilizer codes for biased error models, demonstrating a significant improvement in the undetectable error rate for [[12,1]](2) codes versus the best-known-distance code with the same parameters. As part of this work, we also introduce an evolutionary algorithm QDistEvol for finding the distance of quantum error correction codes.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Nested Quantum Error Correction Codes via Subgraphs
    Li, Yuan
    Ji, Chunlei
    Xu, Mantao
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (02) : 390 - 396
  • [22] Quantum error correction with degenerate codes for correlated noise
    Chiribella, Giulio
    Dall'Arno, Michele
    D'Ariano, Giacomo Mauro
    Macchiavello, Chiara
    Perinotti, Paolo
    PHYSICAL REVIEW A, 2011, 83 (05):
  • [23] Multilevel quantum error correction codes in transform domain
    Guo, Ying
    Huang, Dazu
    Zeng, Guihua
    Lee, Moon Ho
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 4, PROCEEDINGS, 2007, : 594 - +
  • [24] The application of weight parity error correction in quantum codes
    Du, Chao
    Liu, Yiting
    Ma, Zhi
    QUANTUM INFORMATION PROCESSING, 2023, 22 (02)
  • [25] Tapestry of dualities in decohered quantum error correction codes
    Su, Kaixiang
    Yang, Zhou
    Jian, Chao-Ming
    PHYSICAL REVIEW B, 2024, 110 (08)
  • [26] Quantum error correction architecture for qudit stabilizer codes
    Nadkarni, Priya J.
    Garani, Shayan Srinivasa
    PHYSICAL REVIEW A, 2021, 103 (04)
  • [27] Sparse-graph codes for quantum error correction
    MacKay, DJC
    Mitchison, G
    McFadden, PL
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (10) : 2315 - 2330
  • [28] Optimizing Quantum Error Correction Codes with Reinforcement Learning
    Nautrup, Hendrik Poulsen
    Delfosse, Nicolas
    Dunjko, Vedran
    Briegel, Hans J.
    Friis, Nicolai
    QUANTUM, 2019, 3 : 1 - 21
  • [29] Digital System Design for Quantum Error Correction Codes
    Khalifa, Othman O.
    Sharif, Nur Amirah bt
    Saeed, Rashid A.
    Abdel-Khalek, S.
    Alharbi, Abdulaziz N.
    Alkathiri, Ali A.
    CONTRAST MEDIA & MOLECULAR IMAGING, 2021, 2021
  • [30] Nested Quantum Error Correction Codes via Subgraphs
    Yuan Li
    Chunlei Ji
    Mantao Xu
    International Journal of Theoretical Physics, 2014, 53 : 390 - 396