Engineering Quantum Error Correction Codes Using Evolutionary Algorithms

被引:0
|
作者
Webster, Mark A. [1 ]
Browne, Dan E. [1 ]
机构
[1] UCL, Dept Phys & Astron, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Codes; Qubit; Generators; Vectors; Evolutionary computation; Error correction codes; Computational modeling; Standards; Error analysis; Computers; Evolutionary algorithms; quantum error correction; stabilizer codes;
D O I
10.1109/TQE.2025.3538934
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Quantum error correction and the use of quantum error correction codes are likely to be essential for the realization of practical quantum computing. Because the error models of quantum devices vary widely, quantum codes that are tailored for a particular error model may have much better performance. In this work, we present a novel evolutionary algorithm that searches for an optimal stabilizer code for a given error model, number of physical qubits, and number of encoded qubits. We demonstrate an efficient representation of stabilizer codes as binary strings, which allows for random generation of valid stabilizer codes as well as mutation and crossing of codes. Our algorithm finds stabilizer codes whose distance closely matches the best-known-distance codes of Grassl (2007) for n <= 20 physical qubits. We perform a search for optimal distance Calderbank-Steane-Shor codes and compare their distance to the best known codes. Finally, we show that the algorithm can be used to optimize stabilizer codes for biased error models, demonstrating a significant improvement in the undetectable error rate for [[12,1]](2) codes versus the best-known-distance code with the same parameters. As part of this work, we also introduce an evolutionary algorithm QDistEvol for finding the distance of quantum error correction codes.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Quantum convolutional error correction codes
    Chau, HF
    QUANTUM COMPUTING AND QUANTUM COMMUNICATIONS, 1999, 1509 : 314 - 324
  • [2] Quantum multiplexing for error correction codes
    Lo Piparo, Nicolo
    Hanks, Michael
    Gravel, Claude
    Munro, William J.
    Nemoto, Kae
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR), 2020,
  • [3] Scalable Quantum Error Correction for Surface Codes using FPGA
    Liyanage, Namitha
    Wu, Yue
    Deters, Alexander
    Zhong, Lin
    2023 IEEE 31ST ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, FCCM, 2023, : 217 - 217
  • [4] Quantum computations: algorithms and error correction
    Kitaev, AY
    RUSSIAN MATHEMATICAL SURVEYS, 1997, 52 (06) : 1191 - 1249
  • [5] Quantum error correction with fractal topological codes
    Dua, Arpit
    Jochym-O'Connor, Tomas
    Zhu, Guanyu
    QUANTUM, 2023, 7
  • [6] Error correction and decoding for quantum stabilizer codes
    Xiao Fang-Ying
    Chen Han-Wu
    ACTA PHYSICA SINICA, 2011, 60 (08)
  • [7] Homological error correction: Classical and quantum codes
    Bombin, H.
    Martin-Delgado, M. A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (05)
  • [8] Unitary Application of the Quantum Error Correction Codes
    You Bo
    Xu Ke
    Wu Xiao-Hua
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 58 (03) : 377 - 380
  • [9] An efficient simulation of quantum error correction codes
    Priya, R. Padma
    Baradeswaran, A.
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (03) : 2167 - 2175
  • [10] Unitary Application of the Quantum Error Correction Codes
    游波
    许可
    吴小华
    Communications in Theoretical Physics, 2012, 58 (09) : 377 - 380