A Deep Learning Approach for Traffic Flow Prediction in City of Sarajevo
被引:0
作者:
Kamenjasevic, Nedim
论文数: 0引用数: 0
h-index: 0
机构:
Cantonal Adm Inspect Issues Canton Sarajevo, Sarajevo 71000, Bosnia & HercegCantonal Adm Inspect Issues Canton Sarajevo, Sarajevo 71000, Bosnia & Herceg
Kamenjasevic, Nedim
[1
]
Eljazovic, Maida
论文数: 0引用数: 0
h-index: 0
机构:
Nelt Ltd, Sarajevo 71000, Bosnia & HercegCantonal Adm Inspect Issues Canton Sarajevo, Sarajevo 71000, Bosnia & Herceg
Eljazovic, Maida
[2
]
Sarajlic, Mirzet
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sarajevo, Fac Traff & Commun, Sarajevo 7100, Bosnia & HercegCantonal Adm Inspect Issues Canton Sarajevo, Sarajevo 71000, Bosnia & Herceg
Sarajlic, Mirzet
[3
]
机构:
[1] Cantonal Adm Inspect Issues Canton Sarajevo, Sarajevo 71000, Bosnia & Herceg
[2] Nelt Ltd, Sarajevo 71000, Bosnia & Herceg
[3] Univ Sarajevo, Fac Traff & Commun, Sarajevo 7100, Bosnia & Herceg
来源:
NEW TECHNOLOGIES, DEVELOPMENT AND APPLICATION VII, VOL 2, NT-2024
|
2024年
/
1070卷
关键词:
traffic jams;
traffic congestions;
traffic flow;
deep learning;
D O I:
10.1007/978-3-031-66271-3_21
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Constant traffic jams and congestion in the City of Sarajevo reduce efficiency of road infrastructure and increase travel time and air pollution. Achieving a satisfactory level of road network service, which will lead to greater satisfaction of traffic participants, as well as all citizens, requires short-term planning of traffic flows in the City of Sarajevo. Deep learning techniques can be used with technological progress to collect information from real time and to predict future traffic flow in the City of Sarajevo.