ZW-IDS: Zero-Watermarking-based network Intrusion Detection System using data provenance

被引:0
|
作者
Faraj, Omair [1 ,2 ]
Megias, David [3 ]
Garcia-Alfaro, Joaquin [2 ]
机构
[1] Univ Oberta Catalunya, Internet Interdisciplinary Inst, CYBERCAT Ctr Cybersecur Res Catalonia, Barcelona, Spain
[2] Inst Polytech Paris, SAMOVAR, Telecom SudParis, Palaiseau, France
[3] Univ Oberta Catalunya UOC, Internet Interdisciplinary Inst IN3, CYBERCAT Ctr Cybersecur Res Catalonia, Barcelona, Spain
来源
19TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY, AND SECURITY, ARES 2024 | 2024年
关键词
Intrusion Detection System; Data Provenance; Data Hiding; Zero-Watermarking; Machine Learning; Support Vector Machine; INTERNET;
D O I
10.1145/3664476.3670933
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the rapidly evolving digital world, network security is a critical concern. Traditional security measures often fail to detect unknown attacks, making anomaly-based Network Intrusion Detection Systems (NIDS) using Machine Learning (ML) vital. However, these systems face challenges such as computational complexity and misclassification errors. This paper presents ZW-IDS, an innovative approach to enhance anomaly-based NIDS performance. We propose a two-layer classification NIDS integrating zero-watermarking with data provenance and ML. The first layer uses Support Vector Machines (SVM) with ensemble learning model for feature selection. The second layer generates unique zero-watermarks for each data packet using data provenance information. This approach aims to reduce false alarms, improve computational efficiency, and boost NIDS classification performance. We evaluate ZW-IDS using the CICIDS2017 dataset and compare its performance with other multi-method ML and Deep Learning (DL) solutions.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Blockchain Assisted Fireworks Optimization with Machine Learning based Intrusion Detection System (IDS)
    Thiruvenkatasamy, Sudhakar
    Sivaraj, Rajappan
    Vijayakumar, Murugasamy
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2024, 31 (02): : 596 - 603
  • [42] Network intrusion detection and prevention strategy with data encryption using hybrid detection classifier
    C. Pradeepthi
    B. Uma Maheswari
    Multimedia Tools and Applications, 2024, 83 : 40147 - 40178
  • [43] Operational Data Based Intrusion Detection System for Smart Grid
    Efstathopoulos, Georgios
    Grammatikis, Panagiotis Radoglou
    Sarigiannidis, Panagiotis
    Sarigiannidis, Vasilis Argyriou Antonios
    Stamatakis, Konstantinos
    Angelopoulos, Michail K.
    Athanasopoulos, Solon K.
    2019 IEEE 24TH INTERNATIONAL WORKSHOP ON COMPUTER AIDED MODELING AND DESIGN OF COMMUNICATION LINKS AND NETWORKS (IEEE CAMAD), 2019,
  • [44] Machine learning based framework for network intrusion detection system using stacking ensemble technique
    Parashar, Anshu
    Saggu, Kuljot Singh
    Garg, Anupam
    INDIAN JOURNAL OF ENGINEERING AND MATERIALS SCIENCES, 2022, 29 (04) : 509 - 518
  • [45] SH-IDS: Specification Heuristics Based Intrusion Detection System for IoT Networks
    Babu, M. Jagadeesh
    Reddy, A. Raji
    WIRELESS PERSONAL COMMUNICATIONS, 2020, 112 (03) : 2023 - 2045
  • [46] Intrusion Detection System for Healthcare Systems Using Medical and Network Data: A Comparison Study
    Hady, Anar A.
    Ghubaish, Ali
    Salman, Tara
    Unal, Devrim
    Jain, Raj
    IEEE ACCESS, 2020, 8 : 106576 - 106584
  • [47] Intrusion Detection System based on Network Traffic using Deep Neural Networks
    Chamou, Dimitra
    Toupas, Petros
    Ketzaki, Eleni
    Papadopoulos, Stavros
    Giannoutakis, Konstantinos M.
    Drosou, Anastasios
    Tzovaras, Dimitrios
    2019 IEEE 24TH INTERNATIONAL WORKSHOP ON COMPUTER AIDED MODELING AND DESIGN OF COMMUNICATION LINKS AND NETWORKS (IEEE CAMAD), 2019,
  • [48] An End-to-End Framework for Machine Learning-Based Network Intrusion Detection System
    De Carvalho Bertoli, Gustavo
    Pereira Junior, Lourenco Alves
    Saotome, Osamu
    Dos Santos, Aldri L.
    Verri, Filipe Alves Neto
    Marcondes, Cesar Augusto Cavalheiro
    Barbieri, Sidnei
    Rodrigues, Moises S.
    Parente De Oliveira, Jose M.
    IEEE ACCESS, 2021, 9 : 106790 - 106805
  • [49] Network Security Enhanced with Deep Neural Network-Based Intrusion Detection System
    Alrayes, Fatma S.
    Zakariah, Mohammed
    Amin, Syed Umar
    Khan, Zafar Iqbal
    Alqurni, Jehad Saad
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (01): : 1457 - 1490
  • [50] Network intrusion detection system using ANFIS classifier
    Sajith, P. J.
    Nagarajan, G.
    SOFT COMPUTING, 2023, 27 (03) : 1629 - 1638