Resource Allocation for Metaverse Experience Optimization: A Multi-Objective Multi-Agent Evolutionary Reinforcement Learning Approach

被引:0
|
作者
Feng, Lei [1 ]
Jiang, Xiaoyi [1 ]
Sun, Yao [2 ]
Niyato, Dusit [3 ]
Zhou, Yu [1 ]
Gu, Shiyi [1 ]
Yang, Zhixiang [1 ]
Yang, Yang [1 ]
Zhou, Fanqin [1 ]
机构
[1] Beijing Univ Posts & Telecommun BUPT, State Key Lab Networking & Switching Technol, Beijing, Peoples R China
[2] Univ Glasgow, James Watt Sch Engn, Glasgow City, Scotland
[3] Nanyang Technol Univ, Coll Comp & Data Sci, Singapore City, Singapore
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Metaverse; Quality of experience; Delays; Resource management; Optimization; Heuristic algorithms; Rendering (computer graphics); Wireless communication; Energy consumption; Costs; Metaverse experience; multi-objective optimization; resource allocation; Meta-Immersion; energy consumption; VIRTUAL-REALITY; LATENCY;
D O I
10.1109/TMC.2024.3509680
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the Metaverse, real-time, concurrent services such as virtual classrooms and immersive gaming require local graphic rendering to maintain low latency. However, the limited processing power and battery capacity of user devices make it challenging to balance Quality of Experience (QoE) and terminal energy consumption. In this paper, we investigate a multi-objective optimization problem (MOP) regarding power control and rendering capacity allocation by formulating it as a multi-objective optimization problem. This problem aims to minimize energy consumption while maximizing Meta-Immersion (MI), a metric that integrates objective network performance with subjective user perception. To solve this problem, we propose a Multi-Objective Multi-Agent Evolutionary Reinforcement Learning with User-Object-Attention (M2ERL-UOA) algorithm. The algorithm employs a prediction-driven evolutionary learning mechanism for multi-agents, coupled with optimized rendering capacity decisions for virtual objects. The algorithm can yield a superior Pareto front that attains the Nash equilibrium. Simulation results demonstrate that the proposed algorithm can generate Pareto fronts, effectively adapts to dynamic user preferences, and significantly reduces decision-making time compared to several benchmarks.
引用
收藏
页码:3473 / 3488
页数:16
相关论文
共 50 条
  • [21] Multi-Objective Dynamic Path Planning with Multi-Agent Deep Reinforcement Learning
    Tao, Mengxue
    Li, Qiang
    Yu, Junxi
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2025, 13 (01)
  • [22] A reinforcement learning approach for dynamic multi-objective optimization
    Zou, Fei
    Yen, Gary G.
    Tang, Lixin
    Wang, Chunfeng
    INFORMATION SCIENCES, 2021, 546 : 815 - 834
  • [23] Towards Generalized Resource Allocation on Evolutionary Multitasking for Multi-Objective Optimization
    Wei, Tingyang
    Zhong, Jinghui
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2021, 16 (04) : 20 - 37
  • [24] A Multi-Agent Reinforcement Learning Approach for Stock Portfolio Allocation
    Koratamaddi, Prahlad
    Wadhwani, Karan
    Gupta, Mridul
    Sanjeevi, Sriram G.
    CODS-COMAD 2021: PROCEEDINGS OF THE 3RD ACM INDIA JOINT INTERNATIONAL CONFERENCE ON DATA SCIENCE & MANAGEMENT OF DATA (8TH ACM IKDD CODS & 26TH COMAD), 2021, : 410 - 410
  • [25] A resource allocation-based multi-objective evolutionary algorithm for large-scale multi-objective optimization
    Wanting Yang
    Jianchang Liu
    Wei Zhang
    Xinnan Zhang
    Soft Computing, 2023, 27 : 17809 - 17831
  • [26] A resource allocation-based multi-objective evolutionary algorithm for large-scale multi-objective optimization
    Yang, Wanting
    Liu, Jianchang
    Zhang, Wei
    Zhang, Xinnan
    SOFT COMPUTING, 2023, 27 (23) : 17809 - 17831
  • [27] Multi-Agent Reinforcement Learning for Slicing Resource Allocation in Vehicular Networks
    Cui, Yaping
    Shi, Hongji
    Wang, Ruyan
    He, Peng
    Wu, Dapeng
    Huang, Xinyun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (02) : 2005 - 2016
  • [28] Multi-Agent Reinforcement Learning for Efficient Resource Allocation in Internet of Vehicles
    Wang, Jun-Han
    He, He
    Cha, Jaesang
    Jeong, Incheol
    Ahn, Chang-Jun
    ELECTRONICS, 2025, 14 (01):
  • [29] Multi-agent reinforcement learning for intelligent resource allocation in IIoT networks
    Rosenberger, Julia
    Urlaub, Michael
    Schramm, Dieter
    2021 IEEE GLOBAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INTERNET OF THINGS (GCAIOT), 2021, : 118 - 119
  • [30] Multi-Agent Deep Reinforcement Learning Based Distributed Resource Allocation
    Urmonov, Odilbek
    Kim, HyungWon
    2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,