KK-theory of circle actions with the Rokhlin property

被引:0
作者
Gardella, Eusebio [1 ,2 ]
机构
[1] Chalmers Univ Technol, Dept Math Sci, SE-41296 Gothenburg, Sweden
[2] Univ Gothenburg, SE-41296 Gothenburg, Sweden
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2025年
基金
美国国家科学基金会;
关键词
Rokhlin property; K-theory; crossed product; Kirchberg algebra; C-ASTERISK-ALGEBRAS; FINITE-GROUP ACTIONS; ROHLIN PROPERTY; CROSSED-PRODUCTS; UHF ALGEBRAS; AUTOMORPHISMS; CLASSIFICATION;
D O I
10.4153/S0008414X25000112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the structure of circle actions with the Rokhlin property, particularly in relation to equivariant $KK$ -theory. Our main results are $\mathbb {T}$ -equivariant versions of celebrated results of Kirchberg: any Rokhlin action on a separable, nuclear C*-algebra is $KK<^>{\mathbb {T}}$ -equivalent to a Rokhlin action on a Kirchberg algebra; and two circle actions with the Rokhlin property on a Kirchberg algebra are conjugate if and only if they are $KK<^>{\mathbb {T}}$ -equivalent.In the presence of the Universal Coefficient Theorem (UCT), $KK<^>{\mathbb {T}}$ -equivalence for Rokhlin actions reduces to isomorphism of a K-theoretical invariant, namely of a canonical pure extension naturally associated with any Rokhlin action, and we provide a complete description of the extensions that arise from actions on nuclear $C<^>*$ -algebras. In contrast with the non-equivariant setting, we exhibit an example showing that an isomorphism between the $K<^>{\mathbb {T}}$ -theories of Rokhlin actions on Kirchberg algebras does not necessarily lift to a $KK<^>{\mathbb {T}}$ -equivalence; this is the first example of its kind, even in the absence of the Rokhlin property.
引用
收藏
页数:29
相关论文
共 50 条
[41]   Locally Compact Separable Abelian Group Actions on Factors with the Rokhlin Property [J].
Shimada, Koichi .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2014, 50 (03) :363-381
[42]   CROSSED PRODUCTS BY FINITE GROUP ACTIONS WITH CERTAIN TRACIAL ROKHLIN PROPERTY [J].
范庆斋 ;
方小春 .
ActaMathematicaScientia(EnglishSeries), 2018, 38 (03) :829-842
[43]   THE EXACT TRACIAL ROKHLIN PROPERTY [J].
Walters, S. .
HOUSTON JOURNAL OF MATHEMATICS, 2015, 41 (01) :265-272
[44]   Non-splitting in Kirchberg's Ideal-related KK-Theory [J].
Eilers, Soren ;
Restorff, Gunnar ;
Ruiz, Efren .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2011, 54 (01) :68-81
[45]   ROKHLIN ACTIONS OF FINITE GROUPS ON UHF-ABSORBING C*-ALGEBRAS [J].
Barlak, Selcuk ;
Szabo, Gabor .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (02) :833-859
[46]   CROSSED PRODUCT C*-ALGEBRAS BY FINITE GROUP ACTIONS WITH THE TRACIAL ROKHLIN PROPERTY [J].
Archey, Dawn .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2011, 41 (06) :1755-1768
[47]   Proper asymptotic unitary equivalence in KK-theory and projection lifting from the corona algebra [J].
Lee, Hyun Ho .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (01) :135-145
[48]   Rokhlin actions and self-absorbing C*-algebras [J].
Hirshberg, Ilan ;
Winter, Wilhelm .
PACIFIC JOURNAL OF MATHEMATICS, 2007, 233 (01) :125-143
[49]   Stable Rank One and Real Rank Zero for Crossed Products by Finite Group Actions with the Tracial Rokhlin Property [J].
Fan, Qingzhai ;
Fang, Xiaochun .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2009, 30 (02) :179-186
[50]   Generalized Connes-Chern characters in KK-theory with an application to weak invariants of topological insulators [J].
Prodan, Emil ;
Schulz-Baldes, Hermann .
REVIEWS IN MATHEMATICAL PHYSICS, 2016, 28 (10)