KK-theory of circle actions with the Rokhlin property

被引:0
作者
Gardella, Eusebio [1 ,2 ]
机构
[1] Chalmers Univ Technol, Dept Math Sci, SE-41296 Gothenburg, Sweden
[2] Univ Gothenburg, SE-41296 Gothenburg, Sweden
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2025年
基金
美国国家科学基金会;
关键词
Rokhlin property; K-theory; crossed product; Kirchberg algebra; C-ASTERISK-ALGEBRAS; FINITE-GROUP ACTIONS; ROHLIN PROPERTY; CROSSED-PRODUCTS; UHF ALGEBRAS; AUTOMORPHISMS; CLASSIFICATION;
D O I
10.4153/S0008414X25000112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the structure of circle actions with the Rokhlin property, particularly in relation to equivariant $KK$ -theory. Our main results are $\mathbb {T}$ -equivariant versions of celebrated results of Kirchberg: any Rokhlin action on a separable, nuclear C*-algebra is $KK<^>{\mathbb {T}}$ -equivalent to a Rokhlin action on a Kirchberg algebra; and two circle actions with the Rokhlin property on a Kirchberg algebra are conjugate if and only if they are $KK<^>{\mathbb {T}}$ -equivalent.In the presence of the Universal Coefficient Theorem (UCT), $KK<^>{\mathbb {T}}$ -equivalence for Rokhlin actions reduces to isomorphism of a K-theoretical invariant, namely of a canonical pure extension naturally associated with any Rokhlin action, and we provide a complete description of the extensions that arise from actions on nuclear $C<^>*$ -algebras. In contrast with the non-equivariant setting, we exhibit an example showing that an isomorphism between the $K<^>{\mathbb {T}}$ -theories of Rokhlin actions on Kirchberg algebras does not necessarily lift to a $KK<^>{\mathbb {T}}$ -equivalence; this is the first example of its kind, even in the absence of the Rokhlin property.
引用
收藏
页数:29
相关论文
共 50 条
[31]   Equivariant KK-theory for non-Hausdorff groupoids [J].
MacDonald, Lachlan E. .
JOURNAL OF GEOMETRY AND PHYSICS, 2020, 154
[32]   CIRCLE ACTIONS ON UHF-ABSORBING C*-ALGEBRAS [J].
Gardella, Eusebio .
HOUSTON JOURNAL OF MATHEMATICS, 2018, 44 (02) :571-601
[33]   Universal Coefficient Theorems and Assembly Maps in KK-Theory [J].
Meyer, Ralf .
TOPICS IN ALGEBRAIC AND TOPOLOGICAL K-THEORY, 2011, 2008 :45-102
[34]   THE ROKHLIN PROPERTY FOR INCLUSIONS OF C*-ALGEBRAS [J].
Osaka, Hiroyuki ;
Teruya, Tamotsu .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (05) :1785-1792
[35]   Crossed products by finite group actions with the Rokhlin property [J].
Osaka, Hiroyuki ;
Phillips, N. Christopher .
MATHEMATISCHE ZEITSCHRIFT, 2012, 270 (1-2) :19-42
[36]   Rokhlin dimension of Zm-actions on simple C*-algebras [J].
Liao, Hung-Chang .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (07)
[37]   A Short Note on the Continuous Rokhlin Property and the Universal Coefficient Theorem in E-theory [J].
Szabo, Gabor .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (02) :374-380
[38]   Real C*-algebras, united KK-theory, and the Universal Coefficient Theorem [J].
Boersema, JL .
K-THEORY, 2004, 33 (02) :107-149
[39]   SOME PERMANENCE PROPERTIES FOR CROSSED PRODUCTS BY COMPACT GROUP ACTIONS WITH THE TRACIAL ROKHLIN PROPERTY [J].
Tian, Haotian ;
Fang, Xiaochun .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2025, 55 (03) :847-866
[40]   PICTURES OF KK-THEORY FOR REAL C*-ALGEBRAS AND ALMOST COMMUTING MATRICES [J].
Boersema, Jeffrey L. ;
Loring, Terry A. ;
Ruiz, Efren .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 10 (01) :27-47