KK-theory of circle actions with the Rokhlin property

被引:0
作者
Gardella, Eusebio [1 ,2 ]
机构
[1] Chalmers Univ Technol, Dept Math Sci, SE-41296 Gothenburg, Sweden
[2] Univ Gothenburg, SE-41296 Gothenburg, Sweden
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2025年
基金
美国国家科学基金会;
关键词
Rokhlin property; K-theory; crossed product; Kirchberg algebra; C-ASTERISK-ALGEBRAS; FINITE-GROUP ACTIONS; ROHLIN PROPERTY; CROSSED-PRODUCTS; UHF ALGEBRAS; AUTOMORPHISMS; CLASSIFICATION;
D O I
10.4153/S0008414X25000112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the structure of circle actions with the Rokhlin property, particularly in relation to equivariant $KK$ -theory. Our main results are $\mathbb {T}$ -equivariant versions of celebrated results of Kirchberg: any Rokhlin action on a separable, nuclear C*-algebra is $KK<^>{\mathbb {T}}$ -equivalent to a Rokhlin action on a Kirchberg algebra; and two circle actions with the Rokhlin property on a Kirchberg algebra are conjugate if and only if they are $KK<^>{\mathbb {T}}$ -equivalent.In the presence of the Universal Coefficient Theorem (UCT), $KK<^>{\mathbb {T}}$ -equivalence for Rokhlin actions reduces to isomorphism of a K-theoretical invariant, namely of a canonical pure extension naturally associated with any Rokhlin action, and we provide a complete description of the extensions that arise from actions on nuclear $C<^>*$ -algebras. In contrast with the non-equivariant setting, we exhibit an example showing that an isomorphism between the $K<^>{\mathbb {T}}$ -theories of Rokhlin actions on Kirchberg algebras does not necessarily lift to a $KK<^>{\mathbb {T}}$ -equivalence; this is the first example of its kind, even in the absence of the Rokhlin property.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Rokhlin Property for Group Actions on Hilbert C*-modules
    Dey, Santanu
    Osaka, Hiroyuki
    Trivedi, Harsh
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2022, 46 (02) : 151 - 171
  • [22] MORITA EQUIVALENCES AND KK-THEORY FOR BANACH ALGEBRAS
    Paravicini, Walther
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2009, 8 (03) : 565 - 593
  • [23] Rokhlin-Type Properties of Group Actions on Operator Algebras
    Amini, Massoud
    Mohammadkarimi, Javad
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2023, 49 (04)
  • [24] Equivariant algebraic kk-theory and adjointness theorems
    Ellis, Eugenia
    JOURNAL OF ALGEBRA, 2014, 398 : 200 - 226
  • [25] EQUIVARIANT KK-THEORY OF r-DISCRETE GROUPOIDS AND INVERSE SEMIGROUPS
    Burgstaller, Bernhard
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (04) : 1207 - 1220
  • [26] Rokhlin dimension for actions of residually finite groups
    Szabo, Gabor
    Wu, Jianchao
    Zacharias, Joachim
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 : 2248 - 2304
  • [27] THE TRACIAL ROKHLIN PROPERTY FOR ACTIONS OF AMENABLE GROUPS ON C*-ALGEBRAS
    Wang, Qingyun
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (04) : 1307 - 1344
  • [28] The Rokhlin property vs. Rokhlin dimension 1 on unital Kirchberg algebras
    Barlak, Selcuk
    Enders, Dominic
    Matui, Hiroki
    Szabo, Gabor
    Winter, Wilhelm
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2015, 9 (04) : 1383 - 1393
  • [29] Twisted cyclic theory, equivariant KK-theory and KMS states
    Carey, Alan L.
    Neshveyev, Sergey
    Nest, Ryszard
    Rennie, Adam
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 650 : 161 - 191
  • [30] Equivariant KK-theory for non-Hausdorff groupoids
    MacDonald, Lachlan E.
    JOURNAL OF GEOMETRY AND PHYSICS, 2020, 154