Denoising Diffusion Models for 3D Healthy Brain Tissue Inpainting

被引:0
|
作者
Durrer, Alicia [1 ]
Wolleb, Julia [1 ]
Bieder, Florentin [1 ]
Friedrich, Paul [1 ]
Melie-Garcia, Lester [1 ,2 ]
Pineda, Mario Alberto Ocampo [1 ,2 ]
Bercea, Cosmin I. [3 ,4 ]
Hamamci, Ibrahim Ethem [5 ]
Wiestler, Benedikt [6 ]
Piraud, Marie [7 ]
Yaldizli, Oezguer [1 ,2 ]
Granziera, Cristina [1 ,2 ]
Menze, Bjoern [5 ]
Cattin, Philippe C. [1 ]
Kofler, Florian [6 ,7 ,8 ,9 ]
机构
[1] Univ Basel, Dept Biomed Engn, Basel, Switzerland
[2] Univ Hosp Basel, Basel, Switzerland
[3] Tech Univ Munich, Computat Imaging & AI Med, Munich, Germany
[4] Helmholtz Ctr Munich, Inst Machine Learning Biomed Imaging, Munich, Germany
[5] Univ Zurich, Dept Quantitat Biomed, Zurich, Switzerland
[6] Tech Univ Munich, Klinikum Rechts Isar, Sch Med, Dept Diagnost & Intervent Neuroradiol, Munich, Germany
[7] Helmholtz, Helmholtz AI, Munich, Germany
[8] Tech Univ Munich, TUM Sch Computat Informat & Technol, Dept Comp Sci, Munich, Germany
[9] Tech Univ Munich, TranslaTUM Cent Inst Translat Canc Res, Munich, Germany
来源
DEEP GENERATIVE MODELS, DGM4MICCAI 2024 | 2025年 / 15224卷
关键词
Diffusion Model; Inpainting; Magnetic Resonance Images;
D O I
10.1007/978-3-031-72744-3_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monitoring diseases that affect the brain's structural integrity requires automated analysis of magnetic resonance images, e.g., for the evaluation of volumetric changes. However, many of the evaluation tools are optimized for analyzing healthy tissue. To enable the evaluation of scans containing pathological tissue, it is therefore required to restore healthy tissue in the pathological areas. In this work, we explore and extend denoising diffusion probabilistic models (DDPMs) for consistent inpainting of healthy 3D brain tissue. We modify state-of-the-art 2D, pseudo-3D, and 3D DDPMs working in the image space, as well as 3D latent and 3D wavelet DDPMs, and train them to synthesize healthy brain tissue. Our evaluation shows that the pseudo-3D model performs best regarding the structural-similarity index, peak signal-to-noise ratio, and mean squared error. To emphasize the clinical relevance, we fine-tune this model on synthetic multiple sclerosis lesions and evaluate it on a downstream brain tissue segmentation task, where it outperforms the established FMRIB Software Library (FSL) lesion-filling method.
引用
收藏
页码:87 / 97
页数:11
相关论文
共 50 条
  • [41] A nonlocal enhanced Low-Rank tensor approximation framework for 3D Magnetic Resonance image denoising
    Wang, Li
    Xiao, Di
    Hou, Wen S.
    Wu, Xiao Y.
    Jiang, Bin
    Chen, Lin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 72
  • [42] 3d human pose estimation based on conditional dual-branch diffusion
    Li, Jinghua
    Bai, Zhuowei
    Kong, Dehui
    Chen, Dongpan
    Li, Qianxing
    Yin, Baocai
    MULTIMEDIA SYSTEMS, 2025, 31 (01)
  • [43] 3D Object Detection From Point Cloud via Voting Step Diffusion
    Hou, Haoran
    Feng, Mingtao
    Wu, Zijie
    Dong, Weisheng
    Zhu, Qing
    Wang, Yaonan
    Mian, Ajmal
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (12) : 12142 - 12157
  • [44] Neural Wavelet-domain Diffusion for 3D Shape Generation, Inversion, and Manipulation
    Hu, Jingyu
    Hui, Ka-Hei
    Liu, Zhengzhe
    Li, Ruihui
    Fu, Chi-Wing
    ACM TRANSACTIONS ON GRAPHICS, 2024, 43 (02):
  • [45] DMCVR: Morphology-Guided Diffusion Model for 3D Cardiac Volume Reconstruction
    He, Xiaoxiao
    Tan, Chaowei
    Han, Ligong
    Liu, Bo
    Axel, Leon
    Li, Kang
    Metaxas, Dimitris N.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VII, 2023, 14226 : 132 - 142
  • [46] ControlNeRF: Text-Driven 3D Scene Stylization via Diffusion Model
    Chen, Jiahui
    Yang, Chuanfeng
    Li, Kaiheng
    Wu, Qingqiang
    Hong, Qingqi
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT II, 2024, 15017 : 395 - 406
  • [47] Fuzzy generalized fast marching method for 3D segmentation of brain structures
    Baghdadi, Mohamed
    Benamrane, Nacera
    Sais, Lakhdar
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2017, 27 (03) : 281 - 306
  • [48] DTF-diffusion: A 3D equivariant diffusion generation model based on ligand-target information fusion
    Wang, Jianxin
    Zhu, Yongxin
    Liu, Yushuang
    Yu, Bin
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2025, 117
  • [49] Generating 3D pseudo-healthy knee MR images to support trochleoplasty planning
    Wehrli, Michael
    Durrer, Alicia
    Friedrich, Paul
    Buchakchiyskiy, Volodimir
    Mumme, Marcus
    Li, Edwin
    Lehoczky, Gyozo
    Hasler, Carol C.
    Cattin, Philippe C.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2025,
  • [50] 3-D Diffusion Models for Predicting Reverberant Electromagnetic Power Density in Loaded Enclosures
    Yan, Jiexiong
    Dawson, John E.
    Marvin, Andy C.
    Flintoft, Ian David
    Robinson, Martin P.
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2019, 61 (04) : 1362 - 1369