Denoising Diffusion Models for 3D Healthy Brain Tissue Inpainting

被引:0
|
作者
Durrer, Alicia [1 ]
Wolleb, Julia [1 ]
Bieder, Florentin [1 ]
Friedrich, Paul [1 ]
Melie-Garcia, Lester [1 ,2 ]
Pineda, Mario Alberto Ocampo [1 ,2 ]
Bercea, Cosmin I. [3 ,4 ]
Hamamci, Ibrahim Ethem [5 ]
Wiestler, Benedikt [6 ]
Piraud, Marie [7 ]
Yaldizli, Oezguer [1 ,2 ]
Granziera, Cristina [1 ,2 ]
Menze, Bjoern [5 ]
Cattin, Philippe C. [1 ]
Kofler, Florian [6 ,7 ,8 ,9 ]
机构
[1] Univ Basel, Dept Biomed Engn, Basel, Switzerland
[2] Univ Hosp Basel, Basel, Switzerland
[3] Tech Univ Munich, Computat Imaging & AI Med, Munich, Germany
[4] Helmholtz Ctr Munich, Inst Machine Learning Biomed Imaging, Munich, Germany
[5] Univ Zurich, Dept Quantitat Biomed, Zurich, Switzerland
[6] Tech Univ Munich, Klinikum Rechts Isar, Sch Med, Dept Diagnost & Intervent Neuroradiol, Munich, Germany
[7] Helmholtz, Helmholtz AI, Munich, Germany
[8] Tech Univ Munich, TUM Sch Computat Informat & Technol, Dept Comp Sci, Munich, Germany
[9] Tech Univ Munich, TranslaTUM Cent Inst Translat Canc Res, Munich, Germany
来源
DEEP GENERATIVE MODELS, DGM4MICCAI 2024 | 2025年 / 15224卷
关键词
Diffusion Model; Inpainting; Magnetic Resonance Images;
D O I
10.1007/978-3-031-72744-3_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monitoring diseases that affect the brain's structural integrity requires automated analysis of magnetic resonance images, e.g., for the evaluation of volumetric changes. However, many of the evaluation tools are optimized for analyzing healthy tissue. To enable the evaluation of scans containing pathological tissue, it is therefore required to restore healthy tissue in the pathological areas. In this work, we explore and extend denoising diffusion probabilistic models (DDPMs) for consistent inpainting of healthy 3D brain tissue. We modify state-of-the-art 2D, pseudo-3D, and 3D DDPMs working in the image space, as well as 3D latent and 3D wavelet DDPMs, and train them to synthesize healthy brain tissue. Our evaluation shows that the pseudo-3D model performs best regarding the structural-similarity index, peak signal-to-noise ratio, and mean squared error. To emphasize the clinical relevance, we fine-tune this model on synthetic multiple sclerosis lesions and evaluate it on a downstream brain tissue segmentation task, where it outperforms the established FMRIB Software Library (FSL) lesion-filling method.
引用
收藏
页码:87 / 97
页数:11
相关论文
共 50 条
  • [31] Adaptive denoising of 3D volumetric MR images using local variance based estimator
    Das, Pabitra
    Pal, Chandrajit
    Chakrabarti, Amlan
    Acharyya, Amit
    Basu, Saumyajit
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 59
  • [32] Neural Wavelet-domain Diffusion for 3D Shape Generation
    Hui, Ka-Hei
    Li, Ruihui
    Hu, Jingyu
    Fu, Chi-Wing
    PROCEEDINGS SIGGRAPH ASIA 2022, 2022,
  • [33] MLRD-Net: 3D multiscale local cross-channel residual denoising network for MRI-based brain tumor segmentation
    Xue Chen
    Yanjun Peng
    Yanfei Guo
    Jindong Sun
    Dapeng Li
    Jianming Cui
    Medical & Biological Engineering & Computing, 2022, 60 : 3377 - 3395
  • [34] Locally Attentional SDF Diffusion for Controllable 3D Shape Generation
    Zheng, Xin-Yang
    Pan, Hao
    Wang, Peng-Shuai
    Tong, Xin
    Liu, Yang
    Shum, Heung-Yeung
    ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (04):
  • [35] MLRD-Net: 3D multiscale local cross-channel residual denoising network for MRI-based brain tumor segmentation
    Chen, Xue
    Peng, Yanjun
    Guo, Yanfei
    Sun, Jindong
    Li, Dapeng
    Cui, Jianming
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2022, 60 (12) : 3377 - 3395
  • [36] 3D-SRDM: 3D super-resolution of MRI volumes based on diffusion model
    Wu, Zhanxiong
    Chen, Xuanheng
    Yu, Jiangnan
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (03)
  • [37] MinD-3D: Reconstruct High-Quality 3D Objects in Human Brain
    Gao, Jianxiong
    Fu, Yuqian
    Wang, Yun
    Qian, Xuelin
    Feng, Jianfeng
    Fu, Yanwei
    COMPUTER VISION - ECCV 2024, PT XLVII, 2025, 15105 : 312 - 329
  • [38] 3D Visualization of Brain Tumors using MR Images: A Survey
    El-Torky, Dina Mohammed Sherif
    Al-Berry, Maryam Nabil
    Salem, Mohammed Abdel-Megeed
    Roushdy, Mohamed Ismail
    CURRENT MEDICAL IMAGING REVIEWS, 2019, 15 (04) : 353 - 361
  • [39] MRI quality assurance based on 3D FLAIR brain images
    Peltonen, Juha I.
    Makela, Teemu
    Salli, Eero
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2018, 31 (06) : 689 - 699
  • [40] Learning Pseudo 3D Guidance for View-Consistent Texturing with 2D Diffusion
    Li, Kehan
    Fan, Yanbo
    Wu, Yang
    Sung, Zhongqian
    Yang, Wei
    Ji, Xiangyang
    Yuan, Li
    Chen, Jie
    COMPUTER VISION - ECCV 2024, PT LXXXVI, 2025, 15144 : 18 - 34