Denoising Diffusion Models for 3D Healthy Brain Tissue Inpainting

被引:0
|
作者
Durrer, Alicia [1 ]
Wolleb, Julia [1 ]
Bieder, Florentin [1 ]
Friedrich, Paul [1 ]
Melie-Garcia, Lester [1 ,2 ]
Pineda, Mario Alberto Ocampo [1 ,2 ]
Bercea, Cosmin I. [3 ,4 ]
Hamamci, Ibrahim Ethem [5 ]
Wiestler, Benedikt [6 ]
Piraud, Marie [7 ]
Yaldizli, Oezguer [1 ,2 ]
Granziera, Cristina [1 ,2 ]
Menze, Bjoern [5 ]
Cattin, Philippe C. [1 ]
Kofler, Florian [6 ,7 ,8 ,9 ]
机构
[1] Univ Basel, Dept Biomed Engn, Basel, Switzerland
[2] Univ Hosp Basel, Basel, Switzerland
[3] Tech Univ Munich, Computat Imaging & AI Med, Munich, Germany
[4] Helmholtz Ctr Munich, Inst Machine Learning Biomed Imaging, Munich, Germany
[5] Univ Zurich, Dept Quantitat Biomed, Zurich, Switzerland
[6] Tech Univ Munich, Klinikum Rechts Isar, Sch Med, Dept Diagnost & Intervent Neuroradiol, Munich, Germany
[7] Helmholtz, Helmholtz AI, Munich, Germany
[8] Tech Univ Munich, TUM Sch Computat Informat & Technol, Dept Comp Sci, Munich, Germany
[9] Tech Univ Munich, TranslaTUM Cent Inst Translat Canc Res, Munich, Germany
来源
DEEP GENERATIVE MODELS, DGM4MICCAI 2024 | 2025年 / 15224卷
关键词
Diffusion Model; Inpainting; Magnetic Resonance Images;
D O I
10.1007/978-3-031-72744-3_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monitoring diseases that affect the brain's structural integrity requires automated analysis of magnetic resonance images, e.g., for the evaluation of volumetric changes. However, many of the evaluation tools are optimized for analyzing healthy tissue. To enable the evaluation of scans containing pathological tissue, it is therefore required to restore healthy tissue in the pathological areas. In this work, we explore and extend denoising diffusion probabilistic models (DDPMs) for consistent inpainting of healthy 3D brain tissue. We modify state-of-the-art 2D, pseudo-3D, and 3D DDPMs working in the image space, as well as 3D latent and 3D wavelet DDPMs, and train them to synthesize healthy brain tissue. Our evaluation shows that the pseudo-3D model performs best regarding the structural-similarity index, peak signal-to-noise ratio, and mean squared error. To emphasize the clinical relevance, we fine-tune this model on synthetic multiple sclerosis lesions and evaluate it on a downstream brain tissue segmentation task, where it outperforms the established FMRIB Software Library (FSL) lesion-filling method.
引用
收藏
页码:87 / 97
页数:11
相关论文
共 50 条
  • [1] MiDi: Mixed Graph and 3D Denoising Diffusion for Molecule Generation
    Vignac, Clement
    Osman, Nagham
    Toni, Laura
    Frossard, Pascal
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT II, 2023, 14170 : 560 - 576
  • [2] 3D Contour Generation based on Diffusion Probabilistic Models
    Wu, Yiqi
    Huang, Xuan
    Song, Kelin
    He, Fazhi
    Zhang, Dejun
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 1992 - 1997
  • [3] InpaintFusion: Incremental RGB-D Inpainting for 3D Scenes
    Mori, Shohei
    Erat, Okan
    Broll, Wolfgang
    Saito, Hideo
    Schmalstieg, Dieter
    Kalkofen, Denis
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (10) : 2994 - 3007
  • [4] DiffuseIR: Diffusion Models for Isotropic Reconstruction of 3D Microscopic Images
    Pan, Mingjie
    Gan, Yulu
    Zhou, Fangxu
    Liu, Jiaming
    Zhang, Ying
    Wang, Aimin
    Zhang, Shanghang
    Li, Dawei
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT X, 2023, 14229 : 323 - 332
  • [5] 3-D Data Denoising and Inpainting with the Low-Redundancy Fast Curvelet Transform
    A. Woiselle
    J.-L. Starck
    J. Fadili
    Journal of Mathematical Imaging and Vision, 2011, 39 : 121 - 139
  • [6] 3-D Data Denoising and Inpainting with the Low-Redundancy Fast Curvelet Transform
    Woiselle, A.
    Starck, J. -L.
    Fadili, J.
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2011, 39 (02) : 121 - 139
  • [7] A multi-condition denoising diffusion probabilistic model controls the reconstruction of 3D digital rocks
    Luo, Xin
    Sun, Jianmeng
    Zhang, Ran
    Chi, Peng
    Cui, Ruikang
    COMPUTERS & GEOSCIENCES, 2024, 184
  • [8] DiffESM: Conditional Emulation of Temperature and Precipitation in Earth System Models With 3D Diffusion Models
    Bassetti, Seth
    Hutchinson, Brian
    Tebaldi, Claudia
    Kravitz, Ben
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2024, 16 (10)
  • [9] MMIDM: Generating 3D Gesture from Multimodal Inputs with Diffusion Models
    Ye, Ji
    Liu, Changhong
    Wan, Haocong
    Jiang, Aiwen
    Lei, Zhenchun
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT VI, 2025, 15036 : 313 - 327
  • [10] ACCELERATED 3D LOCALIZATION MICROSCOPY USING BLIND SPARSE INPAINTING
    Gaire, Sunil Kumar
    Zhang, Chaoyi
    Li, Hongyu
    Huang, Peizhou
    Liu, Ruiying
    Wang, Haifeng
    Bang, Dong
    Ying, Leslie
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 526 - 529