Biomimetic luffa copper wicks with extraordinary pool boiling heat transfer performance

被引:0
|
作者
Xu, Mou [1 ,2 ]
Luo, Jia-Li [2 ,3 ]
Liao, Jun-Xiang [1 ,2 ]
Mo, Dong-Chuan [1 ,2 ]
Lyu, Shu-Shen [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Mat, Shenzhen 518107, Peoples R China
[2] Guangdong Engn Technol Res Ctr Adv Thermal Control, Guangzhou 510275, Peoples R China
[3] Sun Yat Sen Univ, Sch Flexible Elect, Shenzhen 518107, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrochemical deposition; Pool boiling; Wick; High heat flux; Electronic cooling; THERMAL MANAGEMENT; CONDUCTIVITY; SURFACE; FLUX; ELECTRODEPOSITION; CODEPOSITION; ENHANCEMENT; WETTABILITY; COMPOSITES; MORPHOLOGY;
D O I
10.1016/j.applthermaleng.2025.125787
中图分类号
O414.1 [热力学];
学科分类号
摘要
Achieving efficient thermal management for ultra-high heat flux applications is a significant challenge. Heat dissipation continues to be a major obstacle in the development of electronic components. While pool boiling heat transfer with wick material offers a promising solution, attaining a pool boiling heat transfer capacity of over 500 W/cm2 remains a daunting task. This study draws inspiration from nature and employs electrochemical techniques to fabricate a series of biomimetic luffa copper wicks, each with a thickness of 570 mu m. These biomimetic luffa copper wicks feature straight channels and porous walls that facilitate bubble departure and liquid supplementation during pool boiling. The controllable channel diameter enables the directional induction of fluid-wetting properties and bubble behavior. Larger channels reduce bubble nucleation superheat, increasing both bubble departure frequency and departure diameter, resulting in an optimal boiling heat transfer coefficient of 52.8 W/cm2 & sdot;K, an 820 % increase compared to smooth surfaces. On the other hand, smaller channels have a significantly greater promoting effect on capillary performance. After all, the contradictory behavior of liquid and bubble behavior of the small channel samples ultimately removes a critical heat flux higher than 550 W/cm2 at a superheat lower than 20 degrees C.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] SODIUM POOL BOILING HEAT TRANSFER.
    Sakurai, A.
    Shiotsu, M.
    Kataoka, I.
    Hata, K.
    1978,
  • [32] Electrohydrodynamically enhanced heat transfer in pool boiling
    Seyed-Yagoobi, J.
    Geppert, C.A.
    Geppert, L.M.
    Journal of Heat Transfer, 1996, 118 (01): : 233 - 237
  • [33] Heat transfer and nucleation in pool-boiling
    Hahne, E
    Barthau, G
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2006, 45 (03) : 209 - 216
  • [34] Pool boiling heat transfer to electrolyte solutions
    Jamialahmadi, M
    Helalizadeh, A
    Müller-Steinhagen, H
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (04) : 729 - 742
  • [35] Electrohydrodynamically enhanced heat transfer in pool boiling
    SeyedYagoobi, J
    Geppert, CA
    Geppert, LM
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1996, 118 (01): : 233 - 237
  • [36] Pool boiling heat transfer enhancement with electrowetting
    Sur, Aritra
    Lu, Yi
    Pascente, Carmen
    Ruchhoeft, Paul
    Liu, Dong
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 120 : 202 - 217
  • [38] Mathematical analysis of pool boiling heat transfer
    Xiao Bo-Qi
    Wang Zong-Chi
    Jiang Guo-Ping
    Chen Ling-Xia
    Wei Mao-Jin
    Rao Lian-Zhou
    ACTA PHYSICA SINICA, 2009, 58 (04) : 2523 - 2527
  • [39] Pool Boiling Heat Transfer to Pure Liquids
    Fazel, S. A. Alavi
    Roumana, S.
    CONTINUUM MECHANICS, FLUIDS, HEAT, 2010, : 211 - +
  • [40] Pool Boiling Heat Transfer on structured Surfaces
    Addy, J.
    Olbricht, M.
    Mueller, B.
    Luke, A.
    7TH EUROPEAN THERMAL-SCIENCES CONFERENCE (EUROTHERM2016), 2016, 745